KARAKTERISTIK DAN APLIKASI EDIBLE COATING PADA BUAH DAN SAYUR
Abstract
Keywords
Full Text:
PDFReferences
Abedi, A., Lakzadeh, L., & Amouheydari, M. (2021). Effect of an edible coating composed of whey protein concentrate and rosemary essential oil on the shelf life of fresh spinach. Journal of Food Processing and Preservation, 45(4), 1-9.
Akilie, M.S. (2020). Kombinasi Suhu Rendah Dan Lama Penyimpanan Terhadap Sifat Fisik Buah Pepaya California (Carica papaya L.). Agritechnology, 3(1), 35-41.
Arroyo, B.J., Bezzera, A.C., Oliveira, L.L., Arroyo, S.J., Melo, E.D., Santos, A.M.P. (2019). Antimicrobial active edible coating of alginate and chitosan add ZnO nanoparticles applied in guavas (Psidium guajava L.). Food Chemistry, 309, 125566.
Babu, I., Yasmin, Z., Kanwal, R., Asghar, M., & Tahira, R. (2019). Application of c irradiation and chitosan skin coating for extension of storage life in mango fruit. Journal of Agricultural Research, 57(1), 459. Badan Pusat Statistik. (2021). Produksi Tanaman Sayuran 2021. Badan Pusat Statistik.
Cahyana, H., Christwardana, M., Rokhati, N. (2012). Pengaruh coating alginate-chitosan terhadap pertumbuhan mikroba pada buah melon kupas. Jurnal Teknologi Kimia dan Industri, 1(1), 450-453.
Candir, E., Ozdemir, A.E., & Aksoy, M.C. (2018). Effect of chitosan coating and modified atmosphere packaging on postharvest quality and bioactive compounds of pomegranate fruit cv. Hicaznar. Scientia Horticulturae, 235, 235-243.
Chaudhary, S., Kumar, S., Kumar, V., & Sharma, R. (2020). Chitosan nanoemulsions as advance edible coatings for fruits and vegetables: Composition, fabrication, and developments in last decade. International Journal of Biological Macromolecules, 152, 154-170.
Diaz-Mula, H.M., Serrano, M., & Valero, D. (2012). Alginate Coatings Preserve Fruit Quality and Bioactive Compounds during Storage of Sweet Cherry Fruit. Food and Bioprocess Technology, 5, 2990-2997.
Diharmi, A., Rusnawati, & Irasari, N. (2020). Characteristic of carrageenan Eucheuma cottonii collected from the coast of Tanjung Medang Village and Jaga Island, Riau. IOP Conference Series, 404(1), 012049. Divya, K., Viajayan, S., Jisha, M.S. (2018). Antifungal, antioxidant and cytotoxic activities of chitosan nanoparticles and its use as an edible coating on vegetables. International Journal of Biological Macromolecules, 114, 572-577.
Duan, C., Meng, X., Meng, J., Khan, M.I.H., Dai, L., Khan, A., An, X., Zhang, J., Huq, T., & Ni, Y. (2019). Chitosan as A Preservative for Fruits and Vegetables: A Review on Chemistry and Antimicrobial Properties. Journal of Bioresources and Bioproducts, 4(1), 11-21.
Dwivany, F.M., Aprilyandi, A.N., Suendo, V., & Sukriandi, N. (2020). Carrageenan Edible Coating Application Prolongs Cavendish Banana Shelf Life. International Journal of Food Science, 2020, 1-11. Falco, I., Randazzo, W., Sanchez, G., Rubio, A.L., Fabra, M.J. (2019). On the use of carrageenan matrices for the development of antiviral edible coatings of interest in berries. Food Hydrocolloids, 92, 74-85. Guimares, M.C., Motta, J.F.G., Madella, D.K.S.F., Moura, L.D.A.G., Teodoro, C.E.D.S., & Melo, N.R.D. (2020). Edible coatings used for conservation of minimally processed vegetables: a review. Research, Society, and Development, 9(8), e756986018.
Gutirrez, T.J., & lvarez, K. (2017). Transport phenomena in biodegradable and edible films. In M. A. Masuelli (Ed.), Biopackaging (pp. 5888). Editorial CRC Press Taylor & Francis Group. Gutirrez, T.J. (2018). Biological Macromolecule Composite Films Made from Sagu Starch and Flour/Poly (?-Caprolactone) Blends Processed by Blending/Thermo Molding. Journal Polymers and the Environment, 26(9), 39023912.
Hajji, S., Younes, I., Affes, S., Boufi, S., & Nasri, M. (2018). Optimization of the formulation of chitosan edible coating supplemented with carotenoproteins and their use for extending strawberries postharvest life. Food Hydrocolloids, 83, 375-392.
Hambleton, A., Fabra, M.J., Debeaufort, F., Brun, C.D. & Voilley, A. (2009). Interface and aroma barrier properties of iota-carrageenan emulsionbased films used for encapsulation of active food compounds. Journal of Food Engineering 93(1), 80-88.
Hassan, B., Chatha, S.A.S., Hussain, A.I., Zia, K.M., & Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International journal of Biological Macromolecules 109, 1095107.
Herawati, H. (2018). Potensi Hidrokolid sebagai Bahan Tambahan pada Produk Pangan dan Nonpangan Bermutu. Jurnal Litbang Pertanian, 37(1), 17-25.
Indumathi, M.P., Sarojini, K.S., & Rajarajeswari, G.R. (2019). Antimicrobial and biodegradable chitosan/cellulose acetate phthalate/ZnO nano composite films with optimal oxygen permeability and hydrophobicity for extending the shelf life of black grape fruits. International Journal Biology Macromolecule, 132,11121120.
Imtihani, H. N., Wahyuono, R. A., & Permatasari, S. N. (2020). Biopolimer Kitosan dan Penggunaannya dalam Formulasi Obat. Penerbit Graniti.
Jaramillo, C.M., Pimiento, C.Q., Hoyos, C.G., Gallego, R.Z., Cordoba, A.L. (2020). Alginate-Edible Coatings for Application on Wild Andean Blueberries (Vaccinium meridionale Swartz): Effect of the Addition of Nanofibrils Isolated from Cocoa By-Products. Polymers, 12(4), 824-837.
Kocira, A., Kozlowicz, K., Panasiewicz, K., Staniak, M., Krok, E.S., & Hortynska, P. (2021). Polysaccharides as Edible Films and Coatings: Characteristics and Influence on Fruit and Vegetable QualityA Review. Agronomy, 11(5), 813.
Kou, X., Guo, W., Guo, R., Li, X., & Xue, Z. (2014). Effects of chitosan, calcium chloride, and pullulan coating treatments on antioxidant activity in pear cv. huang Guan during storage. Food and Bioprocess Technology, 7(3), 671681.
Kou, X., Wu, M. (2018). Characterization of Climacteric and Non-Climacteric Fruit Ripening. In: Guo, Y. (eds) Plant Senescence. Methods in Molecular Biology, vol 1744. Humana Press.
Kumar, N., Kaur, P., Devgan, K., & Attkan, A.K. (2020). Shelf-life prolongation of cherry tomato using magnesium hydroxide reinforced bio-nanocomposite and conventional plastic films. Journal of Food Processing and Preservation, 44(4), 1-11.
Li, Y., Lua, Y., Li, L., Chu, Z., Zhang, H., Li, H., Fernie, A. R., & Ouyang, B. (2019). Impairment of hormone pathways results in a general disturbance of fruit primary metabolism in tomato. Food Chemistry 274, 170179.
Lin, M.G., Lasekan, O., Saari, N., & Bejo, S.K. (2018). Effect of chitosan and carrageenan-based edible coatings on post-harvested longan (Dimocarpus longan) fruits. CyTA Journal of Food, 16(1), 490-497. Mahmoud, G. A., Abbas, M. S., Soliman, A. S., & Selim, A. (2019). Effect of essential oils treatments on quality characteristics of Anna apple (Malus domestica Borkh) fruits during cold storage. American-Eurasian Journal of Agricultural & Environmental Sciences, 19(6), 448459.
Meindrawan, B., Suyatma, N.E., Wardanaa, A.A. & Pamela, V.Y. (2018). Nanocomposite coating based on carrageenan and ZnO nanoparticles to maintain the storage quality of mango. Food Packaging and Shelf Life, 18, 140-146.
Mndez, E.D.J.S., Vicente, A., Pinheiro, A.C., Ballesteros, L.F., Silva, P., Garca, R.R., Castillo, F.D.H., Jimnez, M.D.L.V.D., Lpez, M.L.F., Quintanilla, J.A.V., Ramos, P.F.M.P., Lomel, D.A.C., & Rodrguez, D.J.D. (2018). Application of edible nanolaminate coatings with antimicrobial extract of Flourensia cernua to extend the shelf-life of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 150(2019), 19-27.
Merino, D., Gutirrez, T.J., & Alvarez, V.A. (2019). Potential agricultural mulch films based on native and phosphorylated corn starch with and without surface functionalization with chitosan. Journal Polymers and the Environment, 27(1), 97105.
Minh, N.P., Pham, V.T., Nhung, V.T.H., Trang, N.T.T., & Sang, T.T. (2019). Effectiveness of Carrageenan Coating to Extend Shelf Life of Watermelon (Citrullus lanatus) Fruit during Storage Journal of Pharmaceutical Sciences and Research, 11(4), 1393-1396.
Mounika, A.S., Saklani, R., Kaur, N., Kaur, J., Kalsi, R., & Borah, A. (2022). Edible coating/film and its application for minimally processed fruits and vegetables: A review. The Pharma Innovation Journal, 11(6), 1142-1147.
Mujtaba, M., Morsi, R.E., Kerch, G., Elsabee, M.Z., Kaya, M., Labidi, J., & Khawar, K.M. (2019). Current advancements in chitosan-based film production for food technology; A review. International Journal of Biological Macromolecules 121, 889904.
Nair, M. S., Saxena, A., & Kaur, C. (2018). Effect of chitosan and alginate based coatings enriched with pomegranate peel extract to extend the postharvest quality of guava (Psidium guajava L.). Food Chemistry, 240, 245-252.
Nair, M.S., Saxena, A., & Kaur, C. (2018). Characterization and Antifungal Activity of Pomegranate Peel Extract and its Use in Polysaccharide-Based Edible Coatings to Extend the Shelf-Life of Capsicum (Capsicum annuum L.). Food and Bioprocess Technology, 11, 1317-1327.
Novianti, C. & Dwivany, F.M. (2020). Chitosan-based Edible Coating Prolongs Musa troglodytarum L. (Pisang Tongkat Langit) Fruit Shelf-life and Changes the ACS1 and ACO1 Gene Expression Profile. Tropical Agricultural Science, 43(4), 563-581.
Parlapani, F.F., Mallouchos, A., Haroutounian, S.A., & Boziaris, I.S. (2017). Volatile organic compounds of microbial and non-microbial origin produced on model fish substrate un-inoculated and inoculated with gilt-head sea bream spoilage bacteria. LWT Food Science Technology, 78(1-2), 5462.
Parreidt, T.S., Muller, K., & Schmid, M. (2018). Alginate-Based Edible Films and Coatings for Food Packaging Applications. Foods, 7(10), 170-208.
Pinzon, M.I., Sanchez, L.T., Garcia, O.R., Gutierrez, R., Luna, J.C., & Villa, C.C. (2020). Increasing shelf life of strawberries (Fragaria ssp.) by using a banana starch-chitosan-Aloe vera gel composite edible coating. International Journal of Food Science and Technology, 55, 92-98.
Putriyana, R. S., Abdulah, I., Purwaningsih, I., & Silvia, L. (2018, November). Sintesis natrium alginat dari Sargassum sp. Dengan proses leaching. Dalam Industrial Research Workshop and National Seminar (Vol. 9, p. 89-93).
Polban. Qamar, J., Ejaz, S., Anjum, M.A., Nawaz, A., Hussain, S., Ali, S., & Saleem, S. (2018). Effect of Aloe vera Gel, Chitosan and Sodium Alginate Based Edible Coatings on Postharvest Quality of Refrigerated Strawberry Fruits of cv. Chandler. Journal of Horticultural Science and Technology 1(1), 8-16.
Rangkuti, M.F., Hafiz, M., Munthe, I.J., & Fuadi, M. (2019). Aplikasi pati biji alpukat (Parcea americana. Mill) sebagai edible coating buah strawberry (Fragaria sp.) dengan penambahan ekstrak jahe (Zingiber officinale. Rosc). Agrintech: Jurnal Teknologi Pangan dan Hasil Pertanian, 3(1), 1-10.
Rastegar, S., Khakahdani, H.H., & Rahimzadeh, M. (2019). Effectiveness of alginate coating on antioxidant enzymes and biochemical changes during storage of mango fruit. Journal of Food Biochemistry, 43(11), e12990.
Riaz, A., Aadil, R.M., Amoussa, A.M.O., Bahsari, M., Abid, M., & Hashim, M.M. (2020). Application of chitosan-based apple peel polyphenols edible coating on the preservation of strawberry (Fragaria ananassa cv Hongyan) fruit. Journal of Food Processing and Preservation, 45(1), e15018.
Romanazzi, G., Feliziani, E., Banos, S.B., & Sivakumar, D. (2017). Shelf life extension of fresh fruit and vegetables by chitosan treatment. Critical Reviews in Food Science and Nutrition, 57(3), 579-601.
Sapper, M., & Chiralt, A. (2018). Starch-Based Coatings for Preservation of Fruits and Vegetables. The Coatings, 8(5), 1-20. Sharman, P., Shehin, V. P., Kaur, N., & Vyas, P. (2018). Application of edible coating on fresh and minimally processed vegetables: a review. International Journal of Vegetables Science, 25(3), 295-314.
Siburian, W.P., Falah, M.A.F., Mangunwikarta, J. (2021). Alginate-based edible coatings enriched with cinnamon essential oil extend storability and maintain the quality of strawberries under tropical control. Planta Tropika: Jurnal Agrosains (Journal of Agro Science), 9(1), 58-70.
Tapia-Blcido, D.R., Maniglia, B.C., & Tosi, M.M. (2018). Transport phenomena in edible films. In T. J. Gutirrez (Ed.), Polymers for food applications (pp. 149192).
Springer. Tastan, O., Pataro, G., Donsi, F., Ferrari, G., & Baysal, T. (2017). Decontamination of fresh-cut cucumber slices by a combination of a modified chitosan coating containing carvacrol nanoemulsions and pulsed light. International Journal of Food Microbiology, 260, 75-80.
Tran, Y.T.N., Nguyen, A.T.T., & Bui, A.N.N. (2020). A Study of Asparagus Preservation Capacity of Chitosan-Alginate and Chitosan-Carrageenan Biofilms. Journal of Food Engineering and Technology, 9(2), 89-94.
Venugopal, V. (2011). Marine Polysaccharides Food Application. CRC Press. Wani, S.M., Gull, A., Ahad, T., Malik, A.R., Ganaie, T.A., Masoodi, F.A., & Gani, A. (2021). Effect of gum Arabic, xanthan and carrageenan coatings containing antimicrobial agent on postharvest quality of strawberry: Assessing the physicochemical, enzyme activity and bioactive properties. International Journal of Biological Macromolecules, 183, 2100-2108.
Watson, J.A., Treadwell, D., Sargent, S.A., Brecht, J.K., & Pelletire, W. (2016). Postharvest Storage, Packaging and Handling of Specialty Crops: A Guide for Florida Small Farm Producers. University of Florida.
Wisudawaty, P., Yuliasih, I., & Haditjaroko, L. (2020). Aplikasi edible coating minyak kayu manis pada manisan tomat cherry selama penyimpanan. Jurnal Teknologi Industri Pertanian, 30(1), 63-71.
Yu Y W, Li H, Di J H, et al. (2012). Study of natural film with chitosan combining phytic acids on preservation of fresh-cutting lotus root. Journal of Chinese Institute of Food Science and Technology, 12(3), 131136
Zakuwan, S.Z. & Ahmad, I. (2018). Synergistic Effect of Hybridized Cellulose Nanocrystals and Organically Modified Montmorillonite on ?-Carrageenan Bionanocomposites. Nanomaterials, 8(11), 874.
Zam, W. (2019). Effect of Alginate and Chitosan Edible Coating Enrich with Olive Leaves Extract on Shelf Life of Sweet Cherries (Prunus avium L.). Journal of Food Quality, 2019, 1-7.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.