KOMPONEN BIOAKTIF PADA BEBERAPA SUSU NABATI BERBASIS KACANG-KACANGAN DAN POLONG-POLONGAN

Gabriele Sabrina Romadani

Abstract


Susu nabati merupakan produk alternatif sebagai pengganti susu hewani. Susu nnabati dianggap lebih baik daripada susu hewani karena memiliki komposisi lemak jenuh dan kalori yang lebih rendah daripada susu hewani. Konsumen memilih produk nabati dengan pertimbangan kesehatan, kepedulian terhadap hewan dan lingkungan, serta intoleransi laktosa. Penelitian mengenai senyawa bioaktif yang terkandung pada bahan pangan nabati banyak dilakukan untuk meningkatkan nilai dari susu nabati. Sumber bahan nabati yang berasal dari kacang-kacangan dan polong-polongan diketahui mengandung sejumlah senyawa bioaktif yang memberikan efek positif terhadap kesehatan manusia. Tujuan penulisan kajian ini adalah untuk memaparkan berbagai informasi terkait senyawa bioaktif yang terkandung pada berbagai susu nabati berbahan dasar kacang-kacangan dan polong-polongan, seperti peptida bioaktif, lipid bioaktif, isoflavon, fitosterol, dan tokoferol. Ulasan akan dikembangkan pada peranan positif senyawa tersebut terhadap kesehatan tubuh. Susu nabati dapat memberikan efek kesehatan yang bermanfaat sebagai antioksidan pada sistem kekebalan tubuh dan mengurangi risiko penyakit kardiovaskular.

Keywords


senyawa bioaktif; peptida bioaktif; lipid bioaktif; isoflavon; fitosterol; tokoferol

Full Text:

PDF

References


Aydar, E. F., Tutuncua, S., & Ozcelik, B.

(2020). Plant-based milk substitutes: Bioactive compounds, conventional and novel processes, bioavailability studies, and health effects. Journal of Functional Foods, 70, 103975.

Akbarian, M., Khani, A., Eghbalpour, S., & Uversky, V. N. (2022). Bioactive

Peptides: Synthesis, Sources, Applications, and Proposed Mechanisms of Action. International Journal of Molecular Sciences, 23, 1445.

Bull, M., Falgarona, M. J., Alonso, P. H., & Salvad, J. S. (2015) Nutrition attributes and health effects of pistachio nuts. British Journal of Nutrition, 113(S2), S79S93.

Cabral, C. E. & Klein, M. R. S. T. (2017). Phytosterols in the treatment of hypercholesterolemia and prevention of cardiovascular diseases. Arquivos Brasileiros de Cardiologia, 109(5), 475-482.

Capriotti, A. L., Caruso, G., Cavaliere, C., Samperi, R., Ventura, S., Chiozzi, R. Z., & Lagana, A. (2015). Identification of potential bioactive peptides generated by simulated gastrointestinal digestion of soybean seeds and soy milk proteins. Journal of Food Composition and Analysis, 44, 205213.

Ceylan, M. M. & Ozer, E. A. (2020). Almond milk: Preparation, chemical,

fatty acids, mineral,total phenolic compositions and antioxidant activity.

International Journal of Scientific and Technological Research, 6(8), 99-111.Chadha, R., Bhalla, Y., Jain, A.,

Chadha, K., & Karana, M. (2017). Dietary soy isoflavone: A mechanistic insight. Natural Product Communications, 12(4), 627-634.

Das, A., Raychaudhuri, U., & Chakraborty, R. (2012). Cereal based functional food of Indian subcontinent: A review. Journal of Food Science and Technology, 49(6), 665672.

Decloedt , A. I., Landschoot, A. V., Watson, H., Vanderputten, D., & Vanhaecke, L. (2018). Plant-based beverages as good sources of free and glycosidic plant sterols. Nutrients, 10(21),1-18.

Dennis, E. A., & Norris, P. C. (2015). Eicosanoid storm in infection and inflammation. Nature Reviews Immunology, 15(8), 511 523.

Dreher, M. L. (2012). Pistachio nuts: Composition and potential health benefits. Nutrition Review, 70(4), 234240.

Duhan, N., Barak, S., & Mudgil, D. (2020). Bioactive lipids: Chemistry & health benefits. Biointerface Research in Applied Chemistry, 10(6), 6676-6687.

Gies, M., Servent, A., Borel, P., & Mayer, C. D. (2020). Phytosterol vehicles used in a functional product modify carotenoid/cholesterol bioaccessibility and uptake by CaCO-2 cells. Journal of Functional Foods, 68(103920), 1-8.

Gylling, H., & Simonen, P. (2015). Phytosterols, phytostanols, and lipoprotein metabolism. Nutrients. 2015;7(9):7965-77.

Han, H., Choi, J. K., Park, J., Im, H. C., Han, J. H., Huh, M. H., & Lee, Y. B. (2021). Recent innovations in processing technologies for improvement of nutritional quality of soymilk. CYTAJournal Of Food, 19(1), 287303.

Han, J. H., Yang, Y. X., & Feng, M. Y. (2008). Contents of phytosterols in vegetables and fruits commonly consumed in China. Biomedical and Environmental Sciences, 21(6), 449453.

Hejtmnkov, A., Tborsk, J., Kudelov, V., & Kratochvlov, K. (2018). Contents of tocols in different types of dry shell fruits. Agronomy Research, 16(2), 1373 1382.

Hermanto, S., Septiana, A., Putera, D. K., Hatiningsih, F., & Muawanah, A. (2019). ACE inhibitory and antioxidative bioactive peptides derived from hydrolyzed soy milk. Molekul, (14)1, 5663.

Hirattanapun, E., Koonrungsesomboon, N., & Teekachunhatean, S. (2018). Variability of isoflavone content in soy milk products commercially available in Thailand. Journal of Health Science and Medical Research, 36(2),117-126.

Hsiaoa, Y. H., Hob, C. T., & Pana, M. H. (2020). Bioavailability and health benefits of major isoflavone aglycones and their metabolites. Journal of Functional Foods, 74(104164), 1-9.

Jao, C. L., Huang, S. L., & Hsu, K. C. (2012). Angiotensin I- converting enzyme inhibitory peptides: Inhibition mode, bioavailability, and antihypertensive effects. BioMedicine, 2(4), 130-136.

Kathuria, D., Dhiman, A. K., & Attri, S. (2022). Enrichment of isoflavone for development of functional soya and dairy product. Journal of Food Processing and Preservation, 46(16170), 1-18.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.