Skrining senyawa Combretum Indicum sebagai inhibitor Caspase 3 secara In Silico
Abstract
Save to Mendeley
Keywords
Full Text:
PDFReferences
Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., & Nagata, S. (1998). A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature, 391(6662), 4350. https://doi.org/10.1038/34112
Espn, R., Roca, F. J., Candel, S., Sepulcre, M. P., Gonzlez-Rosa, J. M., Alcaraz-Prez, F., Meseguer, J., Cayuela, M. L., Mercader, N., & Mulero, V. (2013). TNF receptors regulate vascular homeostasis in zebrafish through a caspase-8, caspase-2 and P53 apoptotic program that bypasses caspase-3. Disease Models & Mechanisms, 6(2), 383396. https://doi.org/10.1242/dmm.010249
Garcia-Calvo, M., Peterson, E. P., Leiting, B., Ruel, R., Nicholson, D. W., & Thornberry, N. A. (1998). Inhibition of human caspases by peptide-based and macromolecular inhibitors. The Journal of Biological Chemistry, 273(49), 3260832613. https://doi.org/10.1074/jbc.273.49.32608
Hakem, R., Hakem, A., Duncan, G. S., Henderson, J. T., Woo, M., Soengas, M. S., Elia, A., de la Pompa, J. L., Kagi, D., Khoo, W., Potter, J., Yoshida, R., Kaufman, S. A., Lowe, S. W., Penninger, J. M., & Mak, T. W. (1998). Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell, 94(3), 339352. https://doi.org/10.1016/s0092-8674(00)81477-4
Hatori, M., Klatte, K. J., Teixeira, C. C., & Shapiro, I. M. (1995). End labeling studies of fragmented DNA in the avian growth plate: evidence of apoptosis in terminally differentiated chondrocytes. Journal of Bone and Mineral Research : The Official Journal of the American Society for Bone and Mineral Research, 10(12), 19601968. https://doi.org/10.1002/jbmr.5650101216
Huang, G., Lee, X., Bian, Y., Shao, Z., Sheng, G., Pepinsky, R. B., & Mi, S. (2013). Death receptor 6 (DR6) antagonist antibody is neuroprotective in the mouse SOD1G93A model of amyotrophic lateral sclerosis. Cell Death & Disease, 4(10), e841. https://doi.org/10.1038/cddis.2013.378
Jain, A. N., & Nicholls, A. (2008). Recommendations for evaluation of computational methods. Journal of Computer-Aided Molecular Design, 22(34), 133139. https://doi.org/10.1007/s10822-008-9196-5
Karaplis, A. C., & Vautour, L. (1997). Parathyroid hormone-related peptide and the parathyroid hormone/parathyroid hormone-related peptide receptor in skeletal development. Current Opinion in Nephrology and Hypertension, 6(4), 308313. https://doi.org/10.1097/00041552-199707000-00002
Kuhn, M., von Mering, C., Campillos, M., Jensen, L. J., & Bork, P. (2008). STITCH: interaction networks of chemicals and proteins. Nucleic Acids Research, 36(Database issue), D684D688. https://doi.org/10.1093/nar/gkm795
Lee, D., Long, S. A., Adams, J. L., Chan, G., Vaidya, K. S., Francis, T. A., Kikly, K., Winkler, J. D., Sung, C. M., Debouck, C., Richardson, S., Levy, M. A., DeWolf, W. E. J., Keller, P. M., Tomaszek, T., Head, M. S., Ryan, M. D., Haltiwanger, R. C., Liang, P. H., Nuttall, M. E. (2000). Potent and selective nonpeptide inhibitors of caspases 3 and 7 inhibit apoptosis and maintain cell functionality. The Journal of Biological Chemistry, 275(21), 1600716014. https://doi.org/10.1074/jbc.275.21.16007
Lee, H., Shin, E. A., Lee, J. H., Ahn, D., Kim, C. G., Kim, J.-H., & Kim, S.-H. (2018). Caspase inhibitors: a review of recently patented compounds (2013-2015). Expert Opinion on Therapeutic Patents, 28(1), 4759. https://doi.org/10.1080/13543776.2017.1378426
Mesner, P. W. J., Budihardjo, I. I., & Kaufmann, S. H. (1997). Chemotherapy-induced apoptosis. Advances in Pharmacology (San Diego, Calif.), 41, 461499. https://doi.org/10.1016/s1054-3589(08)61069-8
Mollazadeh, S., Fazly Bazzaz, B. S., & Kerachian, M. A. (2015). Role of apoptosis in pathogenesis and treatment of bone-related diseases. Journal of Orthopaedic Surgery and Research, 10, 15. https://doi.org/10.1186/s13018-015-0152-5
Nicholson, D. W., & Thornberry, N. A. (1997). Caspases: killer proteases. Trends in Biochemical Sciences, 22(8), 299306. https://doi.org/10.1016/s0968-0004(97)01085-2
Park, C., Lee, W. S., Go, S.-I., Nagappan, A., Han, M. H., Hong, S. H., Kim, G. S., Kim, G. Y., Kwon, T. K., Ryu, C. H., Shin, S. C., & Choi, Y. H. (2014). Morin, a flavonoid from moraceae, induces apoptosis by induction of BAD protein in human leukemic cells. International Journal of Molecular Sciences, 16(1), 645659. https://doi.org/10.3390/ijms16010645
Wang, F.-L., Connor, J. R., Dodds, R. A., James, I. E., Kumar, S., Zou, C., Lark, M. W., Gowen, M., & Nuttall, M. E. (2000). Differential expression of Egr-1 in osteoarthritic compared to normal adult human articular cartilage. Osteoarthritis and Cartilage, 8(3), 161169. https://doi.org/https://doi.org/10.1053/joca.1999.0295
Yedjou, C. G., Milner, J. N., Howard, C. B., & Tchounwou, P. B. (2010). Basic apoptotic mechanisms of lead toxicity in human leukemia (HL-60) cells. International Journal of Environmental Research and Public Health, 7(5), 20082017. https://doi.org/10.3390/ijerph7052008
Zhu, X., Zhang, K., Wang, Q., Chen, S., Gou, Y., Cui, Y., & Li, Q. (2015). Cisplatin-mediated c-myc overexpression and cytochrome c (cyt c) release result in the up-regulation of the death receptors DR4 and DR5 and the activation of caspase 3 and caspase 9, likely responsible for the TRAIL-sensitizing effect of cisplatin. Medical Oncology (Northwood, London, England), 32(4), 133. https://doi.org/10.1007/s12032-015-0588-9
DOI: https://doi.org/10.33508/jfst.v9i2.3999