A Review of Biofuels and Their Positive Impacts on Health and the Environment

Maria Yuliana, Suryadi Ismadji, Christian Julius Wijaya, Felycia Edi Soetaredjo, Jenni Lie, Sandy Budi Hartono, Wenny Irawaty, Nathania Puspitasari, Suratno Lourentius


Indonesia's high population and rapid economic growth are driving a major transformation in the transportation sector, which is in line with the high increase in fuel demand. The need for biofuel as a substitute for conventional fuel is increasingly being prioritized by considering sustainable development goals (SGDs). Biofuel has safer health and environmental impacts than conventional fuel but still has fuel performance that meets fuel standards and engine performance. Biofuels can be derived from a variety of more sustainable and abundant raw materials, such as biomass and vegetable oils. In this review biodiesel, hydrogenated vegetable oil (HVO), and direct vegetable oil (SVO) are discussed in depth regarding the transformation of their production processes and their impacts on health and the environment. Biodiesel is one of the most widely developed and implemented compared to HVO and SVO to encourage the use of renewable energy in various aspects of people's lives in Indonesia. These three biofuels have different fuel characteristics and performance but can continue to be developed in the future to increase the implementation of renewable energy more massively.

Save to Mendeley


biodiesel; biofuel; transesterification; vegetable oil

Full Text:



Abdulla, R., Ravindra, P., 2013. Immobilized Burkholderia cepacia lipase for biodiesel production from crude Jatropha curcas L. oil. Biomass Bioenergy 56, 8–13. https://doi.org/10.1016/j.biombioe.2013.04.010

Alaei, S., Haghighi, M., Toghiani, J., Rahmani Vahid, B., 2018. Magnetic and reusable MgO/MgFe2O4 nanocatalyst for biodiesel production from sunflower oil: Influence of fuel ratio in combustion synthesis on catalytic properties and performance. Ind Crops Prod 117, 322–332. https://doi.org/10.1016/j.indcrop.2018.03.015

Atabani, A.E., Silitonga, A.S., Badruddin, I.A., Mahlia, T.M.I., Masjuki, H.H., Mekhilef, S., 2012. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2012.01.003

Babu, A.K., Devaradjane, G., 2003. Vegetable oils and their derivatives as fuels for CI engines: An overview.

Bardone, E., Brucato, A., Keshavarz, T., Mata, T.M., Sousa, I.R.B.G., Caetano, N.S., 2012. Transgenic corn oil for biodiesel production via enzymatic catalysis with ethanol. Chem Eng Trans 27.

Bauen, A., Howes, J., Bertuccioli, L., Chudziak, C., 2009. Review of the potential for biofuels in aviation: Final report [WWW Document]. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi= (accessed 1.19.24).

BBC, 2011. Bristol biofuel plant given go-ahead by Eric Pickles [WWW Document]. URL https://www.bbc.com/news/uk-england-bristol-12439191 (accessed 1.19.24).

Boichenko, S., Vovk, O., Yakovlieva, A., Iakovlieva, A., 2013. Overview of innovative technologies for aviation fuels production. Chemistry & Chemical Technology 7.

Bosch, J., de Jong, S., Hoefnagels, R., Slade, R., 2017. Aviation biofuels: strategically important, technically achievable, tough to deliver. Imperial College London.

Cloin, J., 2007. Coconut oil as a fuel in the Pacific Islands. Nat Resour Forum 31, 119–127.

Crown Oil UK, 2019. HVO fuel (hydrotreated vegetable oil) [WWW Document]. URL https://www.crownoiluk.com/products/hvo-fuel/ (accessed 1.19.24).

De Araújo, C.D.M., De Andrade, C.C., De Souza E Silva, E., Dupas, F.A., 2013. Biodiesel production from used cooking oil: A review. Renewable and Sustainable Energy Reviews 27, 445–452. https://doi.org/10.1016/j.rser.2013.06.014

Doliente, S.S., Narayan, A., Tapia, J.F.D., Samsatli, N.J., Zhao, Y., Samsatli, S., 2020. Bio-aviation fuel: A comprehensive review and analysis of the supply chain components. Front Energy Res 8. https://doi.org/10.3389/fenrg.2020.00110

Dubey, P., Gupta, R., 2017. Effects of dual bio-fuel (Jatropha biodiesel and turpentine oil) on a single cylinder naturally aspirated diesel engine without EGR. Appl Therm Eng 115, 1137–1147. https://doi.org/10.1016/j.applthermaleng.2016.12.125

Dunn, R.O., 2002. Low-temperature flow properties of vegetable oil/cosolvent blend diesel fuels. J Am Oil Chem Soc 79.

EBTKE, 2014. Indonesia sebagai lumbung bioenergi dunia [WWW Document]. ESDM. URL https://ebtke.esdm.go.id/post/2011/01/17/70/indonesia.sebagai.lumbung.bioenergi.dunia (accessed 1.19.24).

Eller, Z., Varga, Z., Hancsók, J., 2016. Advanced production process of jet fuel components from technical grade coconut oil with special hydrocracking. Fuel 182, 713–720. https://doi.org/10.1016/j.fuel.2016.06.055

Ernsting, A., 2017. Aviation biofuels: How ICAO and industry plans for “sustainable alternative aviation fuels” could lead to planes flying on palm oil.

Fattah, I.M.R., Masjuki, H.H., Kalam, M.A., Mofijur, M., Abedin, M.J., 2014. Effect of antioxidant on the performance and emission characteristics of a diesel engine fueled with palm biodiesel blends. Energy Convers Manag 79, 265–272. https://doi.org/10.1016/j.enconman.2013.12.024

Faungnawakij, K., Suriye, K., 2013. Current catalytic processes with hybrid materials and composites for heterogeneous catalysis, in: New and Future Developments in Catalysis: Hybrid Materials, Composites, and Organocatalysts. Elsevier B.V., pp. 79–104. https://doi.org/10.1016/B978-0-444-53876-5.00004-0

Fazal, M.A., Haseeb, A.S.M.A., Masjuki, H.H., 2011. Biodiesel feasibility study: An evaluation of material compatibility; Performance; emission and engine durability. Renewable and Sustainable Energy Reviews 15, 1314–1324. https://doi.org/10.1016/j.rser.2010.10.004

Ghadge, S.V., Raheman, H., 2005. Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass Bioenergy 28, 601–605. https://doi.org/10.1016/j.biombioe.2004.11.009

Gong, S., Shinozaki, A., Qian, E.W., 2012. Effect of support on performance of NiMo catalysts in hydrotreating of jatropha oil. Ind Eng Chem Res.

Gregg, F., Goodwin, C., 2013. SVO: Powering your vehicle with straight vegetable oil. New Society Publishers, Canada.

Gutiérrez-Antonio, C., Gómez-Castro, F.I., Segovia-Hernández, J.G., Briones-Ramírez, A., 2013. Simulation and optimization of a biojet fuel production process, in: Proceedings of the 23rd European Symposium on Computer Aided Chemical Engineering. Elsevier B.V., pp. 13–18. https://doi.org/10.1016/B978-0-444-63234-0.50003-8

Han, H., Cao, W., Zhang, J., 2005. Preparation of biodiesel from soybean oil using supercritical methanol and CO2 as co-solvent. Process Biochemistry 40, 3148–3151. https://doi.org/10.1016/j.procbio.2005.03.014

Hanson, S., 2019. Soybean oil comprises a larger share of domestic biodiesel production [WWW Document]. U.S. Energy Information Administration. URL https://www.eia.gov/todayinenergy/detail.php?id=39372 (accessed 1.19.24).

Honeywell UOP, 2021. Honeywell green diesel [WWW Document]. URL https://uop.honeywell.com/en/industry-solutions/renewable-fuels/green-diesel (accessed 1.19.24).

Huber, G.W., O’Connor, P., Corma, A., 2007. Processing biomass in conventional oil refineries: Production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. Appl Catal A Gen 329, 120–129. https://doi.org/10.1016/j.apcata.2007.07.002

IATA, 2019. Developing sustainable aviation fuel (SAF) [WWW Document]. IATA. URL https://www.iata.org/en/programs/environment/sustainable-aviation-fuels/ (accessed 1.19.24).

Islam, A., Taufiq-Yap, Y.H., Ravindra, P., Teo, S.H., Sivasangar, S., Chan, E.S., 2015. Biodiesel synthesis over millimetric γ-Al2O3/KI catalyst. Energy 89, 965–973. https://doi.org/10.1016/j.energy.2015.06.036

Kaltschmitt, M., Neuling, U., 2017. Biokerosene: Status and prospects, Biokerosene: Status and Prospects. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-53065-8

Kazemifard, S., Nayebzadeh, H., Saghatoleslami, N., Safakish, E., 2018. Assessment the activity of magnetic KOH/Fe3O4@Al2O3 core–shell nanocatalyst in transesterification reaction: effect of Fe/Al ratio on structural and performance. Environmental Science and Pollution Research 25, 32811–32821. https://doi.org/10.1007/s11356-018-3249-7

Kittisupakorn, P., Sae-ueng, S., Suwatthikul, A., 2016. Optimization of energy consumption in a hydrotreating process for green diesel production from palm oil, in: Proceedings of the 26th European Symposium on Computer Aided Process Engineering. Elsevier B.V., pp. 751–756. https://doi.org/10.1016/B978-0-444-63428-3.50130-2

Konwar, L.J., Boro, J., Deka, D., 2014. Review on latest developments in biodiesel production using carbon-based catalysts. Renewable and Sustainable Energy Reviews 29, 546–564. https://doi.org/10.1016/j.rser.2013.09.003

Kovács, S., Boda, L., Leveles, L., Thernesz, A., Hancsók, J., 2010. Catalytic hydrotreating of triglycerides for the production of bioparaffin mixture. Chem Eng Trans 21, 1321–1326. https://doi.org/10.3303/CET1021221

Kubička, D., Kaluža, L., 2010. Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts. Appl Catal A Gen 372, 199–208. https://doi.org/10.1016/j.apcata.2009.10.034

Leung, D.Y.C., Guo, Y., 2006. Transesterification of neat and used frying oil: Optimization for biodiesel production. Fuel Processing Technology 87, 883–890. https://doi.org/10.1016/j.fuproc.2006.06.003

Liati, A., Schreiber, D., Alpert, P.A., Liao, Y., Brem, B.T., Corral Arroyo, P., Hu, J., Jonsdottir, H.R., Ammann, M., Dimopoulos Eggenschwiler, P., 2019. Aircraft soot from conventional fuels and biofuels during ground idle and climb-out conditions: Electron microscopy and X-ray micro-spectroscopy. Environmental Pollution 247, 658–667. https://doi.org/10.1016/j.envpol.2019.01.078

Madras, G., Kolluru, C., Kumar, R., 2004. Synthesis of biodiesel in supercritical fluids. Fuel 83, 2029–2033. https://doi.org/10.1016/j.fuel.2004.03.014

Maleki, E., Aroua, M.K., Sulaiman, N.M.N., 2013. Castor oil - A more suitable feedstock for enzymatic production of methyl esters. Fuel Processing Technology 112, 129–132. https://doi.org/10.1016/j.fuproc.2013.03.003

McDermott, F., Turley, D., Evans, G., 2011. Evaluation of bioliquid feedstocks and heat, electricity, and CHP technologies NNFCC Project Number : 11-016. New York.

McGarvey, E., Tyner, W.E., 2018. A stochastic techno-economic analysis of the catalytic hydrothermolysis aviation biofuel technology. Biofuels, Bioproducts and Biorefining 12, 474–484. https://doi.org/10.1002/bbb.1863

Mishra, V.K., Goswami, R., 2018. A review of production, properties and advantages of biodiesel. Biofuels 9, 273–289. https://doi.org/10.1080/17597269.2017.1336350

Moradi, G., Mohadesi, M., Rezaei, R., Moradi, R., 2015. Biodiesel production using CaO/γ-Al2O3 catalyst synthesized by sol-gel method. Canadian Journal of Chemical Engineering 93, 1531–1538. https://doi.org/10.1002/cjce.22258

Moser, B.R., 2009. Biodiesel production, properties, and feedstocks. In Vitro Cellular and Developmental Biology - Plant. https://doi.org/10.1007/s11627-009-9204-z

Nickel, R., Kelly, S., Plume, K., 2021. Renewable diesel boom highlights challenges in clean-energy transition [WWW Document]. Reuters. URL https://www.reuters.com/article/us-global-oil-biofuels-insight-idUSKBN2AV1BS/ (accessed 1.19.24).

OECD/FAO, 2021. OECD-FAO Agricultural Outlook 2021-2030, OECD-FAO Agricultural Outlook. OECD, Paris. https://doi.org/10.1787/19428846-en

Ong, L.K., Effendi, C., Kurniawan, A., Lin, C.X., Zhao, X.S., Ismadji, S., 2013. Optimization of catalyst-free production of biodiesel from Ceiba pentandra (kapok) oil with high free fatty acid contents. Energy 57, 615–623. https://doi.org/10.1016/j.energy.2013.05.069

Popov, S., Kumar, S., 2013. Renewable fuels via catalytic hydrodeoxygenation of lipid-based feedstocks. Biofuels 4, 219–239. https://doi.org/10.4155/bfs.12.89

Richter, S., Braun-Unkhoff, M., Naumann, C., Riedel, U., 2018. Paths to alternative fuels for aviation. CEAS Aeronaut J 9, 389–403. https://doi.org/10.1007/s13272-018-0296-1

Roberts, L.G., Patterson, T.J., 2014. Biofuels. Encyclopedia of Toxicology: Third Edition. https://doi.org/10.1016/B978-0-12-386454-3.01054-X

Roth, A., Riegel, F., Batteiger, V., 2017. Potentials of biomass and renewable energy: The question of sustainable availability, in: Biokerosene: Status and Prospects. Springer Berlin Heidelberg, pp. 95–122. https://doi.org/10.1007/978-3-662-53065-8_6

Schoneveld, G.C., 2010. Potential land use competition from first-generation biofuel expansion in developing countries. Center for International Forestry Research.

Seber, G., Malina, R., Pearlson, M.N., Olcay, H., Hileman, J.I., Barrett, S.R.H., 2014. Environmental and economic assessment of producing hydroprocessed jet and diesel fuel from waste oils and tallow. Biomass Bioenergy 67, 108–118. https://doi.org/10.1016/j.biombioe.2014.04.024

Seljak, T., Buffi, M., Valera-Medina, A., Chong, C.T., Chiaramonti, D., Katrašnik, T., 2020. Bioliquids and their use in power generation – A technology review. Renewable and Sustainable Energy Reviews 129. https://doi.org/10.1016/j.rser.2020.109930

Shah, S., Gupta, M.N., 2007. Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochemistry 42, 409–414. https://doi.org/10.1016/j.procbio.2006.09.024

Sidibé, S.S., Blin, J., Vaitilingom, G., Azoumah, Y., 2010. Use of crude filtered vegetable oil as a fuel in diesel engines state of the art: Literature review. Renewable and Sustainable Energy Reviews 14, 2748–2759. https://doi.org/10.1016/j.rser.2010.06.018

Silitonga, A.S., Atabani, A.E., Mahlia, T.M.I., Masjuki, H.H., Badruddin, I.A., Mekhilef, S., 2011. A review on prospect of Jatropha curcas for biodiesel in Indonesia. Renewable and Sustainable Energy Reviews 15, 3733–3756. https://doi.org/10.1016/j.rser.2011.07.011

Snåre, M., Kubičková, I., Mäki-Arvela, P., Eränen, K., Murzin, D.Y., 2006. Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel. Ind Eng Chem Res 45, 5708–5715. https://doi.org/10.1021/ie060334i

Srivastava, A., Prasad, R., 2000. Triglycerides-based diesel fuels. Renewable and Sustainable Energy Reviews 4, 111–133.

Statista, 2024. Production volume of palm oil in Indonesia from 2014 to 2023 [WWW Document]. Statista Research Department. URL https://www.statista.com/statistics/706786/production-of-palm-oil-in-indonesia/ (accessed 3.19.24).

Suryajaya, S.K., Mulyono, Y.R., Santoso, S.P., Yuliana, M., Kurniawan, A., Ayucitra, A., Sun, Y., Hartono, S.B., Soetaredjo, F.E., Ismadji, S., 2021. Iron (II) impregnated double-shelled hollow mesoporous silica as acid-base bifunctional catalyst for the conversion of low-quality oil to methyl esters. Renew Energy 169, 1166–1174. https://doi.org/10.1016/j.renene.2021.01.107

Vahid, B.R., Haghighi, M., Alaei, S., Toghiani, J., 2017. Reusability enhancement of combustion synthesized MgO/MgAl2O4 nanocatalyst in biodiesel production by glow discharge plasma treatment. Energy Convers Manag 143, 23–32. https://doi.org/10.1016/j.enconman.2017.03.075

van Dyk, S., Saddler, J., 2021. Progress in the commercialization of Biojet /Sustainable Aviation Fuels (SAF): Technologies, potential and challenges [WWW Document]. IEA Bioenergy. URL https://www.ieabioenergy.com/wp-content/uploads/2021/06/IEA-Bioenergy-Task-39-Progress-in-the-commercialisation-of-biojet-fuels-May-2021-1.pdf (accessed 1.19.24).

Yang, J., Xin, Z., He, Q. (Sophia), Corscadden, K., Niu, H., 2019. An overview on performance characteristics of bio-jet fuels. Fuel 237, 916–936. https://doi.org/10.1016/j.fuel.2018.10.079

Zhang, Y., Niu, S., Lu, C., Gong, Z., Hu, X., 2020. Catalytic performance of NaAlO2/γ-Al2O3 as heterogeneous nanocatalyst for biodiesel production: Optimization using response surface methodology. Energy Convers Manag 203. https://doi.org/10.1016/j.enconman.2019.112263

Zoynal Abedin, M., Moinul Islam, M., Anisur Rahman, M., 2011. First law analysis of a DI diesel engine running on straight vegetable oil. International Journal of Mechanical & Mechatronics Engineering 11.

Zullaikah, S., Lai, C.C., Vali, S.R., Ju, Y.H., 2005. A two-step acid-catalyzed process for the production of biodiesel from rice bran oil. Bioresour Technol 96, 1889–1896. https://doi.org/10.1016/j.biortech.2005.01.028

DOI: https://doi.org/10.33508/wt.v23i1.5454