A Review of the Development and Role of Heterogeneous Catalysts for Biodiesel Production

Maria Yuliana, Suryadi Ismadji, Christian Julius Wijaya, Felycia Edi Soetaredjo, Chintya Gunarto, Shella Permatasari Santoso, Jindrayani Nyoo Putro, Adriana Anteng Anggorowati, Suratno Lourentius

Abstract


Indonesian regulations regarding the implementation of B30 encourage a significant increase in biodiesel demand. Moreover, this implementation will continue to be increased to B35 in 2025 and is projected to reach B100 in 2045. This high demand for biodiesel needs to be supported by the development of adequate biodiesel production technology where the catalyst is one aspect that plays an important role in biodiesel production. The use of catalysts aims to accelerate biodiesel production so that high biodiesel yields and good quality are achieved. In biodiesel production, the choice of catalyst greatly influences the operating conditions, the products produced, the subsequent purification process, and the environmental impacts. Moreover, the changing trend in biodiesel raw materials from food to non-food ingredients requires the development of catalysts that are more suitable for the raw materials used in biodiesel production. The specific characteristics of each catalyst play an important role in the transesterification reaction to produce biodiesel where this needs to be supported and adapted to optimum operating conditions, especially in terms of alcohol-to-oil molar ratio, catalyst amount, temperature, pressure, and reaction time. This review provides a comprehensive overview of the various heterogeneous catalysts used to assist the transesterification reactions in biodiesel production.

Save to Mendeley


Keywords


biodiesel; catalyst; heterogeneous; transesterification

Full Text:

PDF

References


Alcañiz-Monge, J., Bakkali, B. El, Trautwein, G., Reinoso, S., 2018. Zirconia-supported tungstophosphoric heteropolyacid as heterogeneous acid catalyst for biodiesel production. Appl Catal B 224, 194–203. https://doi.org/10.1016/j.apcatb.2017.10.066

Alonso, D.M., Granados, M.L., Mariscal, R., Douhal, A., 2009. Polarity of the acid chain of esters and transesterification activity of acid catalysts. J Catal 262, 18–26. https://doi.org/10.1016/j.jcat.2008.11.026

Amini, Z., Ilham, Z., Ong, H.C., Mazaheri, H., Chen, W.H., 2017a. State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production. Energy Convers Manag 141, 339–353. https://doi.org/10.1016/j.enconman.2016.09.049

Amini, Z., Ong, H.C., Harrison, M.D., Kusumo, F., Mazaheri, H., Ilham, Z., 2017b. Biodiesel production by lipase-catalyzed transesterification of Ocimum basilicum L. (sweet basil) seed oil. Energy Convers Manag 132, 82–90. https://doi.org/10.1016/j.enconman.2016.11.017

Andrijanto, E., Dawson, E.A., Brown, D.R., 2012. Hypercrosslinked polystyrene sulphonic acid catalysts for the esterification of free fatty acids in biodiesel synthesis. Appl Catal B 115–116, 261–268. https://doi.org/10.1016/j.apcatb.2011.12.040

Aransiola, E.F., Ojumu, T. V., Oyekola, O.O., Madzimbamuto, T.F., Ikhu-Omoregbe, D.I.O., 2014. A review of current technology for biodiesel production: State of the art. Biomass Bioenergy 61, 276–297. https://doi.org/10.1016/j.biombioe.2013.11.014

Arun, S.B., Suresh, R., Yatish, K. V., Omkaresh, B.R., Channa Keshava Naik, N., 2017. Use of CaO and Na3PO4 Catalysts in the Synthesis of Biodiesel and Investigation of Fuel Properties. Mater Today Proc 4, 11111–11117. https://doi.org/10.1016/j.matpr.2017.08.074

Balbino, J.M., De Menezes, E.W., Benvenutti, E. V., Cataluña, R., Ebeling, G., Dupont, J., 2011. Silica-supported guanidine catalyst for continuous flow biodiesel production. Green Chemistry 13, 3111–3116. https://doi.org/10.1039/c1gc15727b

Barbosa, S.L., Dabdoub, M.J., Hurtado, G.R., Klein, S.I., Baroni, A.C.M., Cunha, C., 2006. Solvent free esterification reactions using Lewis acids in solid phase catalysis. Appl Catal A Gen 313, 146–150. https://doi.org/10.1016/j.apcata.2006.07.015

Benjapornkulaphong, S., Ngamcharussrivichai, C., Bunyakiat, K., 2009. Al2O3-supported alkali and alkali earth metal oxides for transesterification of palm kernel oil and coconut oil. Chemical Engineering Journal 145, 468–474. https://doi.org/10.1016/j.cej.2008.04.036

Bota, R.M., Houthoofd, K., Grobet, P.J., Jacobs, P.A., Leuven, K.U., 2010. Superbase catalysts from thermally decomposed sodium azide supported on mesoporous γ-alumina. Catal Today 152, 99–103. https://doi.org/10.1016/j.cattod.2010.01.002

Boz, N., Degirmenbasi, N., Kalyon, D.M., 2015. Esterification and transesterification of waste cooking oil over Amberlyst 15 and modified Amberlyst 15 catalysts. Appl Catal B 165, 723–730. https://doi.org/10.1016/j.apcatb.2014.10.079

Caetano, C.S., Guerreiro, L., Fonseca, I.M., Ramos, A.M., Vital, J., Castanheiro, J.E., 2009. Esterification of fatty acids to biodiesel over polymers with sulfonic acid groups. Appl Catal A Gen 359, 41–46. https://doi.org/10.1016/j.apcata.2009.02.028

Cerro-Alarcón, M., Corma, A., Iborra, S., Martínez, C., Sabater, M.J., 2010. Methanolysis of sunflower oil using gem-diamines as active organocatalysts for biodiesel production. Appl Catal A Gen 382, 36–42. https://doi.org/10.1016/j.apcata.2010.04.024

Chen, J.-W., Wu, W.-T., 2003. Regeneration of immobilized Candida antarctica lipase for transesterification. J Biosci Bioeng 95, 466–469.

Chen, X.R., Ju, Y.H., Mou, C.Y., 2007. Direct synthesis of mesoporous sulfated silica-zirconia catalysts with high catalytic activity for biodiesel via esterification. Journal of Physical Chemistry C 111, 18731–18737. https://doi.org/10.1021/jp0749221

Chouhan, A.P.S., Sarma, A.K., 2011. Modern heterogeneous catalysts for biodiesel production: A comprehensive review. Renewable and Sustainable Energy Reviews 15, 4378–4399. https://doi.org/10.1016/j.rser.2011.07.112

Christopher, L.P., Hemanathan Kumar, Zambare, V.P., 2014. Enzymatic biodiesel: Challenges and opportunities. Appl Energy 119, 497–520. https://doi.org/10.1016/j.apenergy.2014.01.017

Crabbe, E., Nolasco-Hipolito, C., Kobayashi, G., Sonomoto, K., Ishizaki, A., 2001. Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties. Process Biochemistry 37, 65–71.

da Conceição, L.R. V., Carneiro, L.M., Rivaldi, J.D., de Castro, H.F., 2016. Solid acid as catalyst for biodiesel production via simultaneous esterification and transesterification of macaw palm oil. Ind Crops Prod 89, 416–424. https://doi.org/10.1016/j.indcrop.2016.05.044

Dai, Y.M., Wang, Y.F., Chen, C.C., 2018. Synthesis and characterization of magnetic LiFe5O8-LiFeO2 as a solid basic catalyst for biodiesel production. Catal Commun 106, 20–24. https://doi.org/10.1016/j.catcom.2017.12.002

de Almeida, R.M., Noda, L.K., Gonçalves, N.S., Meneghetti, S.M.P., Meneghetti, M.R., 2008. Transesterification reaction of vegetable oils, using superacid sulfated TiO2-base catalysts. Appl Catal A Gen 347, 100–105. https://doi.org/10.1016/j.apcata.2008.06.006

de Rezende, S.M., de Castro Reis, M., Reid, M.G., Lúcio Silva, P., Coutinho, F.M.B., da Silva San Gil, R.A., Lachter, E.R., 2008. Transesterification of vegetable oils promoted by poly(styrene-divinylbenzene) and poly(divinylbenzene). Appl Catal A Gen 349, 198–203. https://doi.org/10.1016/j.apcata.2008.07.030

Du, L., Li, Z., Ding, S., Chen, C., Qu, S., Yi, W., Lu, J., Ding, J., 2019. Synthesis and characterization of carbon-based MgO catalysts for biodiesel production from castor oil. Fuel 258. https://doi.org/10.1016/j.fuel.2019.116122

Fabiano, D.P., Hamad, B., Cardoso, D., Essayem, N., 2010. On the understanding of the remarkable activity of template-containing mesoporous molecular sieves in the transesterification of rapeseed oil with ethanol. J Catal 276, 190–196. https://doi.org/10.1016/j.jcat.2010.09.015

Faria, E.A., Ramalho, H.F., Marques, J.S., Suarez, P.A.Z., Prado, A.G.S., 2008. Tetramethylguanidine covalently bonded onto silica gel surface as an efficient and reusable catalyst for transesterification of vegetable oil. Appl Catal A Gen 338, 72–78. https://doi.org/10.1016/j.apcata.2007.12.021

Fattah, I.M.R., Ong, H.C., Mahlia, T.M.I., Mofijur, M., Silitonga, A.S., Rahman, S.M.A., Ahmad, A., 2020. State of the art of catalysts for biodiesel production. Front Energy Res 8. https://doi.org/10.3389/fenrg.2020.00101

Feng, Y., Zhang, A., Li, J., He, B., 2011. A continuous process for biodiesel production in a fixed bed reactor packed with cation-exchange resin as heterogeneous catalyst. Bioresour Technol 102, 3607–3609. https://doi.org/10.1016/j.biortech.2010.10.115

Fu, J., Chen, L., Lv, P., Yang, L., Yuan, Z., 2015. Free fatty acids esterification for biodiesel production using self-synthesized macroporous cation exchange resin as solid acid catalyst. Fuel 154, 1–8. https://doi.org/10.1016/j.fuel.2015.03.048

García-Sancho, C., Moreno-Tost, R., Mérida-Robles, J.M., Santamaría-González, J., Jiménez-López, A., Maireles-Torres, P., 2011. Niobium-containing MCM-41 silica catalysts for biodiesel production. Appl Catal B 108–109, 161–167. https://doi.org/10.1016/j.apcatb.2011.08.025

Gog, A., Roman, M., Toşa, M., Paizs, C., Irimie, F.D., 2012. Biodiesel production using enzymatic transesterification - Current state and perspectives. Renew Energy 39, 10–16. https://doi.org/10.1016/j.renene.2011.08.007

Granados, M.L., Alba-Rubio, A.C., Sádaba, I., Mariscal, R., Mateos-Aparicio, I., Heras, Á., 2011. Poly(styrenesulphonic) acid: An active and reusable acid catalyst soluble in polar solvents. Green Chemistry 13, 3203–3212. https://doi.org/10.1039/c1gc15461c

Guerreiro, L., Castanheiro, J.E., Fonseca, I.M., Martin-Aranda, R.M., Ramos, A.M., Vital, J., 2006. Transesterification of soybean oil over sulfonic acid functionalised polymeric membranes. Catal Today 118, 166–171. https://doi.org/10.1016/j.cattod.2005.12.012

Han, H., Cao, W., Zhang, J., 2005. Preparation of biodiesel from soybean oil using supercritical methanol and CO2 as co-solvent. Process Biochemistry 40, 3148–3151. https://doi.org/10.1016/j.procbio.2005.03.014

Hanif, M.A., Nisar, S., Rashid, U., 2017. Supported solid and heteropoly acid catalysts for production of biodiesel. Catal Rev Sci Eng 59, 165–188. https://doi.org/10.1080/01614940.2017.1321452

Hino, M., Arata, K., 1988. Synthesis of solid superacid of tungsten oxide supported on zirconia and its catalytic action for reactions of butane and pentane. J Chem Soc Chem Commun 1259–1260. https://doi.org/10.1039/C39880001259

Hu, S., Wang, Y., Han, H., 2011. Utilization of waste freshwater mussel shell as an economic catalyst for biodiesel production. Biomass Bioenergy 35, 3627–3635. https://doi.org/10.1016/j.biombioe.2011.05.009

Jeromin, L., Peukert, E., Hilden, Wollmann, G., Duesseldorf, 1987. Process for the pre-esterification of free fatty acids in fats and oils. 4,698,186.

Jiménez-Morales, I., Santamaría-González, J., Maireles-Torres, P., Jiménez-López, A., 2011. Methanolysis of sunflower oil catalyzed by acidic Ta2O 5 supported on SBA-15. Appl Catal A Gen 405, 93–100. https://doi.org/10.1016/j.apcata.2011.07.037

Jiménez-Morales, I., Santamaría-González, J., Maireles-Torres, P., Jiménez-López, A., 2010. Zirconium doped MCM-41 supported WO3 solid acid catalysts for the esterification of oleic acid with methanol. Appl Catal A Gen 379, 61–68. https://doi.org/10.1016/j.apcata.2010.03.001

Jitputti, J., Kitiyanan, B., Rangsunvigit, P., Bunyakiat, K., Attanatho, L., Jenvanitpanjakul, P., 2006. Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chemical Engineering Journal 116, 61–66. https://doi.org/10.1016/j.cej.2005.09.025

Kaur, M., Ali, A., 2011. Lithium ion impregnated calcium oxide as nano catalyst for the biodiesel production from karanja and jatropha oils. Renew Energy 36, 2866–2871. https://doi.org/10.1016/j.renene.2011.04.014

Kaur, M., Malhotra, R., Ali, A., 2018. Tungsten supported Ti/SiO2 nanoflowers as reusable heterogeneous catalyst for biodiesel production. Renew Energy 116, 109–119. https://doi.org/10.1016/j.renene.2017.09.065

Kaur, N., Ali, A., 2015. Preparation and application of Ce/ZrO2-TiO2/SO42- as solid catalyst for the esterification of fatty acids. Renew Energy 81, 421–431. https://doi.org/10.1016/j.renene.2015.03.051

Kesserwan, F., Ahmad, M.N., Khalil, M., El-Rassy, H., 2020. Hybrid CaO/Al2O3 aerogel as heterogeneous catalyst for biodiesel production. Chemical Engineering Journal 385. https://doi.org/10.1016/j.cej.2019.123834

Kim, H.J., Kang, B.S., Kim, M.J., Park, Y.M., Kim, D.K., Lee, J.S., Lee, K.Y., 2004. Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst, in: Catalysis Today. pp. 315–320. https://doi.org/10.1016/j.cattod.2004.06.007

Kim, M.Y., Seo, G., Kwon, O.Z., Chang, D.R., 2009. The exceptional activity of a phosphazenium hydroxide catalyst incorporated onto silica in the transesterification of tributyrin with methanol. Chemical Communications 3110–3112. https://doi.org/10.1039/b903969d

Kiss, A.A., Dimian, A.C., Rothenberg, G., 2006. Solid acid catalysts for biodiesel production - Towards sustainable energy. Adv Synth Catal 348, 75–81. https://doi.org/10.1002/adsc.200505160

Kolaczkowski, S.T., Asli, U.A., Davidson, M.G., 2009. A new heterogeneous ZnL2 catalyst on a structured support for biodiesel production. Catal Today 147. https://doi.org/10.1016/j.cattod.2009.07.060

Kouzu, M., Hidaka, J.S., 2012. Transesterification of vegetable oil into biodiesel catalyzed by CaO: A review. Fuel 93, 1–12. https://doi.org/10.1016/j.fuel.2011.09.015

Kouzu, M., Nakagaito, A., Hidaka, J.S., 2011. Pre-esterification of FFA in plant oil transesterified into biodiesel with the help of solid acid catalysis of sulfonated cation-exchange resin. Appl Catal A Gen 405, 36–44. https://doi.org/10.1016/j.apcata.2011.07.026

Kurhade, A., Dalai, A.K., 2018. Physiochemical characterization and support interaction of alumina-supported heteropolyacid catalyst for biodiesel production. Asia-Pacific Journal of Chemical Engineering 13. https://doi.org/10.1002/apj.2249

Lanzafame, P., Temi, D.M., Perathoner, S., Centi, G., MacArio, A., Aloise, A., Giordano, G., 2011. Etherification of 5-hydroxymethyl-2-furfural (HMF) with ethanol to biodiesel components using mesoporous solid acidic catalysts. Catal Today 175, 435–441. https://doi.org/10.1016/j.cattod.2011.05.008

Latchubugata, C.S., Kondapaneni, R.V., Patluri, K.K., Virendra, U., Vedantam, S., 2018. Kinetics and optimization studies using Response Surface Methodology in biodiesel production using heterogeneous catalyst. Chemical Engineering Research and Design 135, 129–139. https://doi.org/10.1016/j.cherd.2018.05.022

Lee, S.L., Wong, Y.C., Tan, Y.P., Yew, S.Y., 2015. Transesterification of palm oil to biodiesel by using waste obtuse horn shell-derived CaO catalyst. Energy Convers Manag 93, 282–288. https://doi.org/10.1016/j.enconman.2014.12.067

Li, W., Jiang, Z., Ma, F., Su, F., Chen, L., Zhang, S., Guo, Y., 2010. Design of mesoporous SO42−/ZrO2–SiO2(Et) hybrid material as an efficient and reusable heterogeneous acid catalyst for biodiesel production. Green Chemistry 12, 2135–2138. https://doi.org/10.1039/c0gc00144a

Li, Y., Zhang, X.D., Sun, L., Xu, M., Zhou, W.G., Liang, X.H., 2010. Solid superacid catalyzed fatty acid methyl esters production from acid oil. Appl Energy 87, 2369–2373. https://doi.org/10.1016/j.apenergy.2010.01.017

Limmanee, S., Naree, T., Bunyakiat, K., Ngamcharussrivichai, C., 2013. Mixed oxides of Ca, Mg and Zn as heterogeneous base catalysts for the synthesis of palm kernel oil methyl esters. Chemical Engineering Journal 225, 616–624. https://doi.org/10.1016/j.cej.2013.03.093

Liu, H., Chen, J., Chen, L., Xu, Y., Guo, X., Fang, D., 2016. Carbon Nanotube-Based Solid Sulfonic Acids as Catalysts for Production of Fatty Acid Methyl Ester via Transesterification and Esterification. ACS Sustain Chem Eng 4, 3140–3150. https://doi.org/10.1021/acssuschemeng.6b00156

Liu, R., Wang, X., Zhao, X., Feng, P., 2008. Sulfonated ordered mesoporous carbon for catalytic preparation of biodiesel. Carbon N Y 46, 1664–1669. https://doi.org/10.1016/j.carbon.2008.07.016

Liu, X., He, H., Wang, Y., Zhu, S., 2007. Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst. Catal Commun 8, 1107–1111. https://doi.org/10.1016/j.catcom.2006.10.026

Liu, Y., Lotero, E., Goodwin, J.G., Lu, C., 2007. Transesterification of triacetin using solid Brønsted bases. J Catal 246, 428–433. https://doi.org/10.1016/j.jcat.2007.01.006

López, D.E., Goodwin, J.G., Bruce, D.A., 2007a. Transesterification of triacetin with methanol on Nafion® acid resins. J Catal 245, 381–391. https://doi.org/10.1016/j.jcat.2006.10.027

López, D.E., Goodwin, J.G., Bruce, D.A., Furuta, S., 2008. Esterification and transesterification using modified-zirconia catalysts. Appl Catal A Gen 339, 76–83. https://doi.org/10.1016/j.apcata.2008.01.009

López, D.E., Goodwin, J.G., Bruce, D.A., Lotero, E., 2005. Transesterification of triacetin with methanol on solid acid and base catalysts. Appl Catal A Gen 295, 97–105. https://doi.org/10.1016/j.apcata.2005.07.055

López, D.E., Suwannakarn, K., Bruce, D.A., Goodwin, J.G., 2007b. Esterification and transesterification on tungstated zirconia: Effect of calcination temperature. J Catal 247, 43–50. https://doi.org/10.1016/j.jcat.2007.01.003

Lunardi, V.B., Gunawan, F., Soetaredjo, F.E., Santoso, S.P., Chen, C.H., Yuliana, M., Kurniawan, A., Lie, J., Angkawijaya, A.E., Ismadji, S., 2021. Efficient one-step conversion of a low-grade vegetable oil to biodiesel over a zinc carboxylate metal-organic framework. ACS Omega 6, 1834–1845. https://doi.org/10.1021/acsomega.0c03826

Madhuvilakku, R., Piraman, S., 2013. Biodiesel synthesis by TiO2-ZnO mixed oxide nanocatalyst catalyzed palm oil transesterification process. Bioresour Technol 150, 55–59. https://doi.org/10.1016/j.biortech.2013.09.087

Majhi, S., Ray, S., 2016. A study on production of biodiesel using a novel solid oxide catalyst derived from waste. Environmental Science and Pollution Research 23, 9251–9259. https://doi.org/10.1007/s11356-015-4824-9

Manríquez-Ramírez, M., Gómez, R., Hernández-Cortez, J.G., Zúñiga-Moreno, A., Reza-San Germán, C.M., Flores-Valle, S.O., 2013. Advances in the transesterification of triglycerides to biodiesel using MgO-NaOH, MgO-KOH and MgO-CeO2 as solid basic catalysts. Catal Today 212, 23–30. https://doi.org/10.1016/j.cattod.2012.11.005

Mansir, N., Taufiq-Yap, Y.H., Rashid, U., Lokman, I.M., 2017. Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: A review. Energy Convers Manag 141, 171–182. https://doi.org/10.1016/j.enconman.2016.07.037

Marchetti, J.M., Errazu, A.F., 2008. Comparison of different heterogeneous catalysts and different alcohols for the esterification reaction of oleic acid. Fuel 87, 3477–3480. https://doi.org/10.1016/j.fuel.2008.05.011

Mardhiah, H.H., Ong, H.C., Masjuki, H.H., Lim, S., Lee, H. V., 2017. A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2016.09.036

Marso, T.M.M., Kalpage, C.S., Udugala-Ganehenege, M.Y., 2020. Application of chromium and cobalt terephthalate metal organic frameworks as catalysts for the production of biodiesel from Calophyllum inophyllum oil in high yield under mild conditions. J Inorg Organomet Polym Mater 30, 1243–1265. https://doi.org/10.1007/s10904-019-01251-8

Marwaha, A., Rosha, P., Mohapatra, S.K., Mahla, S.K., Dhir, A., 2018. Waste materials as potential catalysts for biodiesel production: Current state and future scope. Fuel Processing Technology 181, 175–186. https://doi.org/10.1016/j.fuproc.2018.09.011

Mckenzie, A.L., Fishel, C.T., Davis, R.J., 1992. Investigation of the Surface Structure and Basic Properties of Calcined Hydrotalcites. J Catal 138, 547–561.

Meloni, D., Monaci, R., Zedde, Z., Cutrufello, M.G., Fiorilli, S., Ferino, I., 2011. Transesterification of soybean oil on guanidine base-functionalized SBA-15 catalysts. Appl Catal B 102, 505–514. https://doi.org/10.1016/j.apcatb.2010.12.032

Mootabadi, H., Salamatinia, B., Bhatia, S., Abdullah, A.Z., 2010. Ultrasonic-assisted biodiesel production process from palm oil using alkaline earth metal oxides as the heterogeneous catalysts. Fuel 89, 1818–1825. https://doi.org/10.1016/j.fuel.2009.12.023

Nakagaki, S., Bail, A., Santos, V.C. dos, Souza, V.H.R. de, Vrubel, H., Nunes, F.S., Ramos, L.P., 2008. Use of anhydrous sodium molybdate as an efficient heterogeneous catalyst for soybean oil methanolysis. Appl Catal A Gen 351, 267–274. https://doi.org/10.1016/j.apcata.2008.09.026

Nassreddine, S., Karout, A., Lorraine Christ, M., Pierre, A.C., 2008. Transesterification of a vegetal oil with methanol catalyzed by a silica fibre reinforced aerogel encapsulated lipase. Appl Catal A Gen 344, 70–77. https://doi.org/10.1016/j.apcata.2008.04.002

Navajas, A., Campo, I., Moral, A., Echave, J., Sanz, O., Montes, M., Odriozola, J.A., Arzamendi, G., Gandía, L.M., 2018. Outstanding performance of rehydrated Mg-Al hydrotalcites as heterogeneous methanolysis catalysts for the synthesis of biodiesel. Fuel 211, 173–181. https://doi.org/10.1016/j.fuel.2017.09.061

Ngaosuwan, K., Mo, X., Goodwin, J.G., Praserthdam, P., 2010. Effect of solvent on hydrolysis and transesterification reactions on tungstated zirconia. Appl Catal A Gen 380, 81–86. https://doi.org/10.1016/j.apcata.2010.03.030

Ni, J., Meunier, F.C., 2007. Esterification of free fatty acids in sunflower oil over solid acid catalysts using batch and fixed bed-reactors. Appl Catal A Gen 333, 122–130. https://doi.org/10.1016/j.apcata.2007.09.019

Nikseresht, A., Daniyali, A., Ali-Mohammadi, M., Afzalinia, A., Mirzaie, A., 2017. Ultrasound-assisted biodiesel production by a novel composite of Fe(III)-based MOF and phosphotangestic acid as efficient and reusable catalyst. Ultrason Sonochem 37, 203–207. https://doi.org/10.1016/j.ultsonch.2017.01.011

Nowicki, J., Lach, J., Organek, M., Sabura, E., 2016. Transesterification of rapeseed oil to biodiesel over Zr-dopped MgAl hydrotalcites. Appl Catal A Gen 524, 17–24. https://doi.org/10.1016/j.apcata.2016.05.015

OECD/FAO, 2021. OECD-FAO Agricultural Outlook 2021-2030, OECD-FAO Agricultural Outlook. OECD, Paris. https://doi.org/10.1787/19428846-en

Omar, W.N.N.W., Amin, N.A.S., 2011. Biodiesel production from waste cooking oil over alkaline modified zirconia catalyst. Fuel Processing Technology 92, 2397–2405. https://doi.org/10.1016/j.fuproc.2011.08.009

Omota, F., Dimian, A.C., Bliek, A., 2003. Fatty acid esterification by reactive distillation: Part 2 - kinetics-based design for sulphated zirconia catalysts. Chem Eng Sci 58, 3175–3185. https://doi.org/10.1016/S0009-2509(03)00154-4

Pandit, P.R., Fulekar, M.H., 2017. Egg shell waste as heterogeneous nanocatalyst for biodiesel production: Optimized by response surface methodology. J Environ Manage 198, 319–329. https://doi.org/10.1016/j.jenvman.2017.04.100

Pangestu, T., Kurniawan, Y., Soetaredjo, F.E., Santoso, S.P., Irawaty, W., Yuliana, M., Hartono, S.B., Ismadji, S., 2019. The synthesis of biodiesel using copper based metal-organic framework as a catalyst. J Environ Chem Eng 7. https://doi.org/10.1016/j.jece.2019.103277

Pârvulescu, V.I., Pârvulescu, V., Endruschat, U., Granger, P., Richards, R., 2007. Mesoporous Pt-SiO2 and Pt-SiO2-Ta2O 5 catalysts prepared using Pt colloids as templates. ChemPhysChem 8, 666–678. https://doi.org/10.1002/cphc.200600571

Pasias, S., Barakos, N., Alexopoulos, C., Papayannakos, N., 2006. Heterogeneously catalyzed esterification of FFAs in vegetable oils. Chem Eng Technol 29, 1365–1371. https://doi.org/10.1002/ceat.200600109

Pimentel, D., Patzek, T.W., 2005. Ethanol production using corn, switchgrass, and wood; Biodiesel production using soybean and sunflower. Natural Resources Research 14, 65–76. https://doi.org/10.1007/s11053-005-4679-8

Rahadi, A.N., Martinus, J.J., Santoso, S.P., Yuliana, M., Kurniawan, A., Gunarto, C., Hartono, S.B., Soetaredjo, F.E., Ismadji, S., 2021. Double-shelled hollow mesoporous silica incorporated copper (II) (Cu/DS-HMS-NH2) as a catalyst to promote in-situ esterification/transesterification of low-quality palm oil. Int J Energy Res 45, 19929–19946. https://doi.org/10.1002/er.7064

Ropero-Vega, J.L., Aldana-Pérez, A., Gómez, R., Niño-Gómez, M.E., 2010. Sulfated titania [TiO2/SO42-]: A very active solid acid catalyst for the esterification of free fatty acids with ethanol. Appl Catal A Gen 379, 24–29. https://doi.org/10.1016/j.apcata.2010.02.020

Roschat, W., Phewphong, S., Khunchalee, J., Moonsin, P., 2018. Biodiesel production by ethanolysis of palm oil using SrO as a basic heterogeneous catalyst. Mater Today Proc 5, 13916–13921.

Roschat, W., Siritanon, T., Yoosuk, B., Promarak, V., 2016. Biodiesel production from palm oil using hydrated lime-derived CaO as a low-cost basic heterogeneous catalyst. Energy Convers Manag 108, 459–467. https://doi.org/10.1016/j.enconman.2015.11.036

Rosset, I.G., Tavares, M.C.H., Assaf, E.M., Porto, A.L.M., 2011. Catalytic ethanolysis of soybean oil with immobilized lipase from Candida antarctica and 1H NMR and GC quantification of the ethyl esters (biodiesel) produced. Appl Catal A Gen 392, 136–142. https://doi.org/10.1016/j.apcata.2010.10.035

Russbueldt, B.M.E., Hoelderich, W.F., 2009. New sulfonic acid ion-exchange resins for the preesterification of different oils and fats with high content of free fatty acids. Appl Catal A Gen 362, 47–57. https://doi.org/10.1016/j.apcata.2009.04.019

Salinas, D., Sepúlveda, C., Escalona, N., GFierro, J.L., Pecchi, G., 2018. Sol–gel La2O3–ZrO2 mixed oxide catalysts for biodiesel production. Journal of Energy Chemistry 27, 565–572. https://doi.org/10.1016/j.jechem.2017.11.003

Santiago-Torres, N., Romero-Ibarra, I.C., Pfeiffer, H., 2014. Sodium zirconate (Na2ZrO3) as a catalyst in a soybean oil transesterification reaction for biodiesel production. Fuel Processing Technology 120, 34–39. https://doi.org/10.1016/j.fuproc.2013.11.018

Santosa, F.H., Laysandra, L., Soetaredjo, F.E., Santoso, S.P., Ismadji, S., Yuliana, M., 2019. A facile noncatalytic methyl ester production from waste chicken tallow using single step subcritical methanol: Optimization study. Int J Energy Res 43, 8852–8863. https://doi.org/10.1002/er.4844

Semwal, S., Arora, A.K., Badoni, R.P., Tuli, D.K., 2011. Biodiesel production using heterogeneous catalysts. Bioresour Technol 102, 2151–2161. https://doi.org/10.1016/j.biortech.2010.10.080

Shi, G., Yu, F., Wang, Y., Pan, D., Wang, H., Li, R., 2016. A novel one-pot synthesis of tetragonal sulfated zirconia catalyst with high activity for biodiesel production from the transesterification of soybean oil. Renew Energy 92, 22–29. https://doi.org/10.1016/j.renene.2016.01.094

Siddiquee, M.N., Kazemian, H., Rohani, S., 2011. Biodiesel production from the lipid of wastewater sludge using an acidic heterogeneous catalyst. Chem Eng Technol 34, 1983–1988. https://doi.org/10.1002/ceat.201100119

Sirisomboonchai, S., Abuduwayiti, M., Guan, G., Samart, C., Abliz, S., Hao, X., Kusakabe, K., Abudula, A., 2015. Biodiesel production from waste cooking oil using calcined scallop shell as catalyst. Energy Convers Manag 95, 242–247. https://doi.org/10.1016/j.enconman.2015.02.044

Soumanou, M.M., Bornscheuer, U.T., 2003. Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme Microb Technol 33, 97–103. https://doi.org/10.1016/S0141-0229(03)00090-5

Sreeprasanth, P.S., Srivastava, R., Srinivas, D., Ratnasamy, P., 2006. Hydrophobic, solid acid catalysts for production of biofuels and lubricants. Appl Catal A Gen 314, 148–159. https://doi.org/10.1016/j.apcata.2006.08.012

Suryajaya, S.K., Mulyono, Y.R., Santoso, S.P., Yuliana, M., Kurniawan, A., Ayucitra, A., Sun, Y., Hartono, S.B., Soetaredjo, F.E., Ismadji, S., 2021. Iron (II) impregnated double-shelled hollow mesoporous silica as acid-base bifunctional catalyst for the conversion of low-quality oil to methyl esters. Renew Energy 169, 1166–1174. https://doi.org/10.1016/j.renene.2021.01.107

Suryaputra, W., Winata, I., Indraswati, N., Ismadji, S., 2013. Waste capiz (Amusium cristatum) shell as a new heterogeneous catalyst for biodiesel production. Renew Energy 50, 795–799. https://doi.org/10.1016/j.renene.2012.08.060

Teo, S.H., Rashid, U., Thomas Choong, S.Y., Taufiq-Yap, Y.H., 2017. Heterogeneous calcium-based bimetallic oxide catalyzed transesterification of Elaeis guineensis derived triglycerides for biodiesel production. Energy Convers Manag 141, 20–27. https://doi.org/10.1016/j.enconman.2016.03.042

Tesser, R., Di Serio, M., Guida, M., Nastasi, M., Santacesaria, E., 2005. Kinetics of oleic acid esterification with methanol in the presence of triglycerides. Ind Eng Chem Res 44, 7978–7982. https://doi.org/10.1021/ie050588o

Tichit, D., Lhouty, M.H., Guida, A., Chiche, B.H., Figueras, F., Auroux, A., Bartalini, D., Garrone, E., 1995. Textural properties and catalytic activity of hydrotalcites. J Catal 151, 50–59.

Timorria, I.F., 2021. Kemendag: Harga pangan dunia diperkirakan mulai stabil 2022 [WWW Document]. Bisnis.com. URL https://ekonomi.bisnis.com/read/20210604/12/1401480/kemendag-harga-pangan-dunia-diperkirakan-mulai-stabil-2022 (accessed 3.10.23).

Trakarnpruk, W., Porntangjitlikit, S., 2008. Palm oil biodiesel synthesized with potassium loaded calcined hydrotalcite and effect of biodiesel blend on elastomer properties. Renew Energy 33, 1558–1563. https://doi.org/10.1016/j.renene.2007.08.003

Vaccari, A., 1999. Clays and catalysis: A promising future. Appl Clay Sci 14, 161–198.

Valvekens, P., Vermoortele, F., De Vos, D., 2013. Metal-organic frameworks as catalysts: The role of metal active sites. Catal Sci Technol 3, 1435–1445. https://doi.org/10.1039/c3cy20813c

Watanabe, Y., Shimada, Y., Sugihara, A., Noda, H., Fukuda, H., Tominaga, Y., 2000. Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase. J Am Oil Chem Soc 77, 355–360.

Watanabe, Y., Shimada, Y., Sugihara, A., Tominaga, Y., 2001. Enzymatic conversion of waste edible oil to biodiesel fuel in a fixed-bed bioreactor. J Am Oil Chem Soc 78, 703–707.

Xie, W., Wan, F., 2019. Immobilization of polyoxometalate-based sulfonated ionic liquids on UiO-66-2COOH metal-organic frameworks for biodiesel production via one-pot transesterification-esterification of acidic vegetable oils. Chemical Engineering Journal 365, 40–50. https://doi.org/10.1016/j.cej.2019.02.016

Yadav, G.D., Thathagar, M.B., 2002. Esterification of maleic acid with ethanol over cation-exchange resin catalysts. React Funct Polym 52, 99–110.

Yaşar, F., 2019. Biodiesel production via waste eggshell as a low-cost heterogeneous catalyst: Its effects on some critical fuel properties and comparison with CaO. Fuel 255. https://doi.org/10.1016/j.fuel.2019.115828

Yoo, S.J., Lee, H. shik, Veriansyah, B., Kim, J., Kim, J.D., Lee, Y.W., 2010. Synthesis of biodiesel from rapeseed oil using supercritical methanol with metal oxide catalysts. Bioresour Technol 101, 8686–8689. https://doi.org/10.1016/j.biortech.2010.06.073

Yuliana, M., Santoso, S.P., Soetaredjo, F.E., Ismadji, S., Ayucitra, A., Angkawijaya, A.E., Ju, Y.H., Tran-Nguyen, P.L., 2020. A one-pot synthesis of biodiesel from leather tanning waste using supercritical ethanol: Process optimization. Biomass Bioenergy 142. https://doi.org/10.1016/j.biombioe.2020.105761

Zafiropoulos, N.A., Ngo, H.L., Foglia, T.A., Samulski, E.T., Lin, W., 2007. Catalytic synthesis of biodiesel from high free fatty acid-containing feedstocks. Chemical Communications 3670–3672. https://doi.org/10.1039/b704189f

Zeng, H. yan, Liao, K. bo, Deng, X., Jiang, H., Zhang, F., 2009. Characterization of the lipase immobilized on Mg-Al hydrotalcite for biodiesel. Process Biochemistry 44, 791–798. https://doi.org/10.1016/j.procbio.2009.04.005

Zhang, G., Hattori, H., Tanabe, K., 1988. Aldol Addition of Acetone, Catalyzed by Solid Base Catalysts: Magnesium Oxide, Calcium Oxide, Strontium Oxide, Barium Oxide, Lanthanum (III) Oxide and Zirconium Oxide. Appl Catal 36, 189.

Zhang, Q., Lei, D., Luo, Q., Wang, J., Deng, T., Zhang, Y., Ma, P., 2020. Efficient biodiesel production from oleic acid using metal-organic framework encapsulated Zr-doped polyoxometalate nano-hybrids. RSC Adv 10, 8766–8772. https://doi.org/10.1039/d0ra00141d

Ziȩba, A., Drelinkiewicz, A., Konyushenko, E.N., Stejskal, J., 2010. Activity and stability of polyaniline-sulfate-based solid acid catalysts for the transesterification of triglycerides and esterification of fatty acids with methanol. Appl Catal A Gen 383, 169–181. https://doi.org/10.1016/j.apcata.2010.05.042




DOI: https://doi.org/10.33508/wt.v23i1.5453