Degradasi Sianida Dalam Limbah Cair Menggunakan Oksidator NaOCL

Adriana Anteng Anggorowati, Suratno Lourentius

Abstract


Sianida merupakan senyawa yang sangat bersifat toksik jika melebihi nilai ambang batas yang diijinkan oleh Pemerintah. Sianida dipergunakan pada proses sianidasi khususnya pada proses pengolahan bijih emas di bidang pertambangan. Sianidasi dilakukan oleh para penambang emas yang berskala kecil sebagai pengganti proses amalgamasi. Limbah cair dari proses sianidasi mengandung kadar sianida yang tinggi hingga 35 – 45 mg/L. Oleh sebab itu konsentrasi sianida yang masih tinggi ini perlu diturunkan supaya memenuhi syarat baku mutu sebelum dibuang ke lingkungan. Salah satu metode yang dapat digunakan untuk mendegradasi sianida dalam limbah adalah oksidasi. Oksidator yang dipergunakan dalam penelitian ini adalah NaOCl. Proses oksidasi dalam degradasi sianida ini dilakukan dengan variasi konsentrasi oksidator (% v/v) mulai dari 0,4%, 0,8%, 1,2%, 1,6% dan 2% dan variasi waktu oksidasi 0,5 jam, 1 jam, 1,5 jam, dan 2 jam. Proses oksidasi menggunakan NaOCl berlangsung 2 tahap, yaitu pembentukan senyawa sianat kemudian hidrolisis sianat yang menghasilkan gas nitrogen dan bikarkonat yang tidak toksik. Setiap proses oksidasi, pH selalu dijaga 12, sebab jika keasaman larutan tinggi dikhawatirkan akan menghasilkan senyara sianogen khlorida yang bersifat toksik. Berdasarkan hasil penelitian, limbah cair proses sianidasi yang mengalami pengenceran 15 kali, sehingga memiliki konsentrasi sianida 2,8740 mg/L dapat turun konsentrasinya menjadi 0,1095 mg/L dengan menggunakan oksidator NaOCl sebesar 2% (v/v) selama waktu oksidasi 2 jam. Konsentrasi sianida ini hampir mendekati baku mutu yang diijinkan dalam Permenkes No. 32 Tahun 2017 yaitu 0,


Save to Mendeley


Keywords


degradasi sianida, natrium hipoklorit

Full Text:

PDF

References


Adams, M. . (2005). Advances In Gold Ore Processing (1st ed.). Amsterdam, Holland: Elsevier Inc.

Adams, M. . (2013). Impact of Recycling Cyanide and Its Reaction Products on Upstream Unit Operations. Minerals Engineering, (53), 241.

Alvillo-Rivera, A; Garrido-Hoyos, S; Buitr, G; Thangarasu-Sarasvathi, P; & Rosano-Ortega, G. (2021). Biological Treatment for the Degradation of Cyanide: A review. Journal of Materials Research and Technology, (12), 1418–1433. https://doi.org/https://doi.org/10.1016/j.jmrt.2021.03.030

Amaouche, H; Chergui, S; Halet, F; Yeddou A.R; Chergui, A; Nadjemi, B; & Ould-Dris, A. (2018). Removal of Cyanide in Aqueous Solution by Oxidation with Hydrogen Peroxide Catalyzed by Copper Oxide. Water Science & Technology, 80(1), 126–133. https://doi.org/https://doi.org/10.2166/wst.2019.254

Arif, H.J; Sheeraz, A.M; Azizullah, C; & Asif, H. . (2019). Efficient Removal of Cyanide from Industrial Effluent Using Acid Treated Modified Surface Activated Carbon. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(22), 2715–2724. https://doi.org/https://doi.org/10.1080/15567036.2019.1568643

Berenguer, R; Rosa-Toro, A.L; Quijada, C; & Morallón, E. (2017). Electrocatalytic Oxidation of Cyanide on Copper-doped Cobalt Oxide Electrodes. Applied Catalysis B: Environmental, 207, 286–296. https://doi.org/https://doi.org/10.1016/j.apcatb.2017.01.078

BSN. (2011). Cara Uji Sianida (CN-) Secara Spektrofotometri. Retrieved from Sni 6989.77-2011 Cara Uji Sianida (cn-) Secara Spektrofotometri [q6ngozwv804v] (idoc.pub)

Cui, J; Wang, X; Yuan, Y; Guo, X; Gu, X; & Jian, L. (2014). Combined Ozone Oxidation and Biological Aerated Filter Processes for Treatment of Cyanide Containing Electroplating Wastewater. Chemical Engineering Journal, (241), 184–189. https://doi.org/https://doi.org/10.1016/j.cej.2013.09.003

Hewit, D.M; Simons, A.M; & Breuer, P. . (2015). A Fundamental Investigation of the Caro’s Acid Cyanide Destruction Process. The Canadian Journal of Metallurgy and Materials Science, 54(3). https://doi.org/https://doi.org/10.1179/1879139515Y.0000000014

Kamrani, M.S; Seifpanahi-Shabani, K; Seyed-Hakimi, A; Al, G.A.M; Agarwa, S; & Gupta, K. . (2019). Degradation of Cyanide from Gold Processing Effluent by H2O2, NaClO and Ca(ClO)2 Combined with Sequential Catalytic Process. Bulgarian Chemical Communications, 51(3), 384–393. https://doi.org/https://doi.org/10.34049/bcc.51.3.5052

Kuyucak, N; & Akcil, A. (2013). Minerals Engineerring, Cyanide and Removal Options from Effluents in Golg mining and Metallurgical Processes, 50(51), 13–29. https://doi.org/https://doi.org/10.1016/j.mineng.2013.05.02

Mondal, A; Saha, P; Sarkar, S; & Nair, U. . (2021). Mitigation of Cyanide From Coke Plant Wastewater Using Chemical Oxidation Process. Research Square, (October), 1–21. https://doi.org/https://doi.org/10.21203/rs.3.rs-727204/v1.

Permenkes RI No. 32 2017. Standar Baku Mutu Kesehatan Lingkungan dan Persyaratan Kesehatan Air untuk Keperluan Higiene Sanitasi, Kolam Renang, Solus Per Aqua, dan Pemandian Umum (2017). Jakarta: Kementrian Kesehatan Republik Indonesia.

Feng-Zhang, Ren; Yin, Li-Tao; Wang, Shan-Shan; Volinsky, A; & Tian, B.-H. (2013). Cyanide-Free Silver Electroplating Process in Thiosulfate Bath and Microstructure Analysis of Ag Coatings. Transactions of Nonferrous Metal Society of China, 23(13), 3822–3828. https://doi.org/https://doi.org/10.1016/S1003-6326(13)62935-0

Sinbuathong, N; Kongseri, B; Plungklang, P; & Khun-anake, R. (2000). Cyanide Removal from Laboratory Wastewater Using Sodium Hypochlorite and Calcium Hypochlorite. Natural Science, 34, 74–78.

Singh, N; & Balomajumder, C. (2016). Batch Growth Kinetic Studies for Elimination of Phenol and Cyanide Using Mixed Microbial Culture. Journal of Water Process Engineering, 11, 130–137. https://doi.org/https://doi.org/10.1016/j.jwpe.2016.04.006

Smith, A; & Mudder, T. (1991). The Chemistry and Treatment of Cyanidation Waste. London: Mining Journal Books Ltd.

Teixeira, L.A.C; Arellano, M.T.C; Sarmiento, C.M; Yokoyama, L; & da FonsecaAraujo, F. . (2013). Oxidation of Cyanide in Water by Singlet Oxygen Generated by the Reaction between Hydrogen Peroxide and Hypochlorite. Minerals Engineering, 50(51), 57–63. https://doi.org/https://doi.org/10.1016/j.mineng.2013.06.007

Yazici, E.Y; Deveci, H; Alp, I; Uslu, T; & Celep, O. (2006). Factors Affecting Decomposition of Cyanide by Hydrogen Peroxide. In Proceedings of the 23 rd International Mineral Processing Congress. Istanbul, Turkey.




DOI: https://doi.org/10.33508/wt.v21i2.4479