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ABSTRACT  

 

Robot developments have been integrated into several industrial and home appliances. To keep up 

with the development, UNIKA Atma Jaya created a group called PATRIOT as a head start, and started the 

development on ROTARIC robot. One of the early robot research discussed in this paper is to design and 

implement ROTARIC 6-DOF robot pose recording system which is drawn using forward kinematics with 

Denavit Hartenberg method. The system has a GUI with several function inside such as robot pose 

recording, 2-D display of the robot recorded pose using Forward Kinematics analysis, and playback 

recorded pose. The system uses several hardware that have been connected serially such as 6 Dynamixel 

MX-28 servo, OpenCM 9.04 +485 EXP microcontroller, and a Computer. The Software used in the system 

is C# .NET with WinForms App as the GUI and Arduino IDE. From the test done in this research, the 

recording and 2-D drawing system achieved error <±1cm or 6.67% relative error caused by the resolution 

value while reading the servo position sensor and the value rounding inside the program. Meanwhile, the 

playback recording function that uses queue system achieved error of <±1cm and error of ±5cm or 33.3% 

relative error when the recorded pose is played using real time delay used in recording. The error is caused 

by the robot failure to keep up with the speed of the recorded pose and the limited torque in servo number 

2 in the robot. 

 

ABSTRAK  

 

Perkembangan robot telah diintegrasikan kedalam berbagai peralatan industry dan rumah. Untuk 

menyamakan perkembangan tersebut UNIKA Atma Jaya membuat grup bernama PATRIOT sebagai 

tumpuan awal dan telah  memulai pengembangan untuk robot ROTARIC. Salah satu penelitian yang 

didiskusikan di paper ini adalah desain dan implementasi sistem perekaman pose robot ROTARIC 6-DOF 

yang digambarkan menggunakan forward kinematic dengan metode Denavit Hartenberg. Sistem tersebut 

memiliki GUI dengan berberapa fungsi didalamnya seperti perekaman pose robot, penggambaran pose 

robot 2-D  menggunakan analisis Forward Kinematik dan pemutaran pose rekaman. Sistem tersebut 

menggunakan berberapa perangkat keras yang dihubungkan secara serial seperti 6 buah servo Dynamixel 

MX-28, mikrokontroller OpenCM 9.04 +EXP 485, dan sebuah Komputer. Perangkat lunak yang digunakan 

pada sistem yaitu C# .NET dengan WinForms App sebagai GUI dan juga Arduino IDE. Dari pengujian 

yang dilakukan pada penelitian ini, sistem perekaman dan penggambaran 2-D memeperoleh nilai error 

<±1cm atau relative error sebesar 6.67% disebabkan oleh nilai resolusi pada saat pembacaan sensor 

posisi pada servo dan juga pembulatan didalam program. Sementara, pada fungsi pemutaran rekaman 

yang menggunakan sistem antrian memperoleh error <±1cm dan untuk pemutaran rekaman yang 

menggunakan waktu jeda meperoleh error ±5cm atau relative error sebesar 33.3%. Error tersebut 

disebabkan oleh kegagalan robot untuk menyamakan kecepatan dengan kecepatan rekaman pose, dan juga 

keterbatasan torsi pada servo kedua pada robot. 

 

Keywords: 6-DOF Articulated Robot; Robot pose recording; Forward Kinematics; 

Dynamixel MX-28; OpenCM 9.04. 

 

I. Introduction 
Robotics technologies have advanced and 

integrated in every form of electronic device 

from several home appliances to industrial scaled 

automated manufacturers. Robots services is to 

replace direct human work automatically, as 

efficient and reliably repeatable1. Faculty of 

Engineering of UNIKA Atma Jaya have started a 

team called “Pusat Robotik dan Internet of 

Things” (PATRIOT). The team intent is to 

develop an articulated robot manipulator as a 
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head start of robotics research in UNIKA Atma 

Jaya.  

Early development stage of this robot is to 

design and build robotic arm with 6-Degree of 

Freedom (DOF) called ROTARIC (Rotary 

Articulated Arm Robot with Interchangeable 

Component). The robot is intended to have 

features such as easy to modify, movement 

position recording, fast response, accurate and 

User Interface capable of controlling and 

monitors through programs. This development is 

expected to bring the basic research in robotic 

design, programming, and functionality that may 

led to more advanced research in the future.  

This works dives into the recording 

functionality in the robotic arm.  The recording 

function aims to make controlling and 

programming the robot easier through input 

based on where the links and joints condition in 

real time by manually moving the robot by hand. 

Then after the recorded links and joints have been 

saved, the robot can be moved according to the 

recorded information. Secondly the recorded 

information can be displayed as a movement 

simulation using a user interface. 

 

II. Theory/ basic theory 
II.1. Articulated Robotic Arm 

The articulated robotic arm is the type of 

robot manipulator where several robot links are 

connected serially by either a revolute or 

prismatic joint from the base of the robot to the 

end-effector2. Because of this configuration the 

robot has many poses based on its joint condition 

that can also change its end-effector position and 

orientation3. To determine the position of the 

joints and link in a Coordinate space uses a 

solution called Forward Kinematics4.  

II.2. Forward Kinematics with Denavit 

Hartenberg Parameters 

In Robotics application, Forward 

Kinematics can be used to determine a robot 

coordinates in a 3-D plane based on the robot 

joint and links5. There are many forward 

kinematics models to do this. One of which is the 

Denavit-Hartenberg(D-H) model that is the most 

common one to use6.  

To determine the pose of a robotic arm in a 

Cartesian coordinate, the first step is to assign the 

Denavit Hartenberg parameter on each joint 

based on the position and orientation of the joint. 

Before the Denavit Hartenberg is assigned, each 

joint is attached with 3-D coordinate frame by 

following some prerequisite/rules7. 

1. Each joint axis either rotational or linear 

must be assigned as axis Zi. 

2. Define the axis Xi perpendicular to axis Zi 

and axis Zi-1.If possible, define Xi parallel 

to Xi-1. 

3. Define axis Yi perpendicular to both Zi and 

Xi according to right hand rule. 

After each joint orientation and position 

have been determined, the next step is to 

determine the D-H parameters of each joint. The 

D-H parameters of a joint consist of 4 

parameters7: 

1. Parameter d is the offset from the center of 

previous joint Oi-1 to the center of current 

joint Oi-1 measured from Zi-1. 

2. Parameter θ (theta) is the angle needed to 

rotate the joint around Zi-1 until axis    Xi-1 

is aligned to Xi. 

3. Parameter a is the offset from Oi-1 to Oi 

measured from axis Xi 

4. Parameter α (alpha) is the angle needed to 

rotate the joint, around axis Xi until axis Zi 

is aligned to Zi-1 

After the D-H parameter is determined then 

the next step is to create homogenous 

transformation matrix based on the D-H 

parameter. The matrix consists of 2 part, the 3x3 

matrix rotational part and 3x1 matrix translation 

part as pictured in equation 1. 

 [T] =  (
|

R

3 x 3

| |
T

3x1
|

0 0 0 1

) (1) 

Homogenous matrix of Denavit Hartenberg 

is the transformation matrix of a joint that consist 

of 2 components. First, is the transformation 

along the Zi axis on the joint depicted as 4x4 

matrix [Zi] which is the result of translation along 

axis Zi by di [TZi(di)] and rotation around axis Zi 

by θi [RZi(θi)].  

 

[TZi(di)]  = [

1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1

] (2) 

 [RZi(θi)] = [

cos θi −sin θi 0 0
sin θi cos θi 0 0
0 0 1 0
0 0 0 1

]  (3) 

 [Zi] =  [TZi(di)][RZi(θi)] (4) 

Second, is the transformation along axis Xi 

on the joint depicted as 4x4 matrix [Xi] which is 

the result of translation along Xi by ai [Txi(ri)]and 

rotation around Xi by αi [Rxi(ri)]. 
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 [TXi(ai)]  = [

1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1

] (5) 

 [RZi(αi)] = [

1 0 0 0
1 cos αi −sin αi 0
0 sin αi cos αi 0
0 0 0 1

] (6) 

 [Xi] =  [TXi(ai)][RZi(αi)] (7) 

The two 2 component is multiplied as 

equation 8 and 9 which resulted in 4x4 matrix 

[ T]n
m  indicating a transformation from joint m to 

joint n. 

 [ T]n
m = [Zi][Xi] (8) 

= [

cosθi −sin θi cosαi sinθi  sinαi ai cosθi 
sin θi cos θi cosαi −cosθi sinαi ai cosθi
0 sinαi cos αi dn
0 0 0 1

] (9) 

After the matrix of each DH-Parameter have 

been created, then the next step is to multiply 

each transformation matrix from the base [ T1
0 ] 

with the next matrix [ T2
1 ]  which created the 

matrix result [ T2
0 ]. Then the current matrix result 

is multiplied by the next transformation  matrix 

[ T3
2 ]  which created the next matrix result [ T3

0 ] 
and so on until the n transformation matrix has 

been multiplied which created the final result 

matrix [ Tn
0 ] as depicted in equation 10. 

 [ Tn
0 ] =  [ T1

0 ][ T2
1 ] …  [ Tn

n−1 ]  (10) 

After each calculation is done the position 

of each joint (Px,Py,Pz) can be acquired by 

extracting the 3x1 matrix on the upper right 

corner from each end-effector matrix ( [ Pn
0 ]) 

depicted below in equation 11. 

[ Tn
0 ] =  

(

 |
R

3 x 3

||

Px
Py
Pz

|→ Pn
0

0 0 0 1 )

  (11) 

 

III. Research methodology 

III.1. Robot Structure and System 

The ROTARIC robot is an articulated 

robotic arm type. On this research the robot is a 

6 DOF robotic arm ,with the structures are shown 

in figure 1. System of the 6 DOF robotic arm  is 

designed as block diagram on figure 2.  

Six Dynamixel MX-288 servo is used as 

rotational joint between the links connected 

serially. Then the robot is connected to an 

OpenCM 9.049 and its expansion board EXP 

48510 microcontroller as a serial interface to the 

robot and connected through serial interface on 

the computer. The computer has a Visual C# .Net 

program that processing all the input or output 

from the User Interface and calculating the 

kinematics of the robot. The C# program uses 

Object Oriented Programming divided into 5 

classes by its role in the program. The UI 

interface is displayed through figure 3 to 5. 

The Recording system is started by giving 

an input(in this case a press of a button to start 

the function, and textbox time delay between 

each records) to the UI in the C# program. Then 

the program sends the command to get each servo 

angle to the OpenCM 9.04 through the serial port 

and then the OpenCM9.04 sends the command to 

 

Figure 1. ROTARIC Robot Structure Design 

 

Figure 2. ROTARIC System Diagram 

 

Figure 3. Record Mode UI 

servo 6 

servo 5 

servo 4 

servo 3 
servo 2 

servo 1 
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read the register where the current servo angle is 

saved through its serial port to the servos.  

Then the servo writes the angle data back to 

the serial port to the OpenCM 9.04. Then the 

servos angle is sent back from OpenCM serial 

port to the C# Program on the PC. The angle then 

saved in a text file according to the chosen save 

file , including the time delay used for the 

recording. Then the program waits until either 

stop recording command is called or  until the 

time delay is up which then the program is looped 

back to the start of recording.  While this 

recording program is looping, the robotic arm 

then can be turned manually by hand and the pose 

can be saved at when the time delay is up. 

Once the recording is saved and the 

recording program is stopped then recorded pose 

can be played back. First the playback program 

read the saved angle and then send the command 

to write the angle to the OpenCM 9.04. Then the 

OpenCM 9.04 writes the position to the servos as 

goal position to turn to. Meanwhile, another 

program is used to determine and draw the 

coordinates of each servo in a  3-D space.  

To determine the robot coordinates in a 3-D 

plane, requires a method to calculate the position 

and orientation, which will be the  Forward 

Kinematics. 

III.2. Forward Kinematics  

Based on its structure, the robot joints frame 

and orientation can be described by putting 8 

frames on the robot as pictured  on figure 6. Then 

based on the joint frames, the  DH-Parameter can 

be created on table 1. Based on the joint frames, 

the robot only has the parameter θi that changed 

dynamically, the other parameters are statics 

parameter. 

Based on the D-H parameter on table 1, the 

D-H matrix [ Tn
n−1 ]  is created from [ T1

0 ]  to 
[ T8
7 ].Multiplying each matrix sequentially from 

[ T1
0 ]  to [ T7

6 ]  resulted in each end-effector 

matrices for each joint until the last end-effector 

matrix [ T7
0 ] as depicted in equation 12 through 

18. 

 

Figure 4. The 3-D representation with 2-D plane Pivot  

Table 1. D-H Parameters 

i a α d θ 

1 0 0 0 0 

2 0 -90 d1 θ1 

3 0 90 0 θ2 

4 0 -90 d3 θ3 

5 0 90 0 θ4 

6 0 -90 d5 θ5 

7 0 90 0 θ6 

8 0 0 d7 0 

 

Figure 5. Robot Coordinate Frames 

 

Figure 6. Play mode UI 
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 [ T2
0 ] =  [ T1

0 ][ T2
1 ] (12) 

 [ T3
0 ] = [ T2

0 ][ T3
2 ] (13) 

 [ T4
0 ] =  [ T3

0 ][ T4
3 ] (14) 

 [ T5
0 ] =  [ T4

0 ][ T5
4 ] (15) 

 [ T6
0 ] =  [ T5

0 ][ T6
5 ] (16) 

 [ T7
0 ] =  [ T6

0 ][ T7
6 ] (17) 

 [ T8
0 ] =  [ T7

0 ][ T8
7 ] (18) 

This method from the start of defining D-H 

parameter until getting each position of end-

effector is repeated every time the drawing 

function gets called using each servo angles as an 

input parameter. 

 

IV. Research results and discussions  
IV.1. Servo MX-28Torque Test 

The servo needs to be tested for servo 

torque to determine the availability of torque. 

This test is done by several step. 

1. The servo is put on a fixed base about 1.5 

meter above the floor. 

2. Changed the servo register Moving_Speed 

to a variable value (100,200,500). Changed 

the servo angle from 0o (downward) to 90o 

(sideward). 

3. A steel rod about 20 cm is mounted on the 

servo horn. The rod weight is 55 grams. 

The steel rod is marked with tape at 5 cm, 

10 cm, 15 cm and  20 cm. 

4. Then a string is attached at the first mark. 

A bottle with water as variable weight is 

attached to the string. The bottle was made 

to be hanging above the floor. 

5. Change the servo angle to 180o(upward) 

slowly(e.g. 10o in difference), if it able to 

hold the weight and not sending an alarm 

message.  

6. The torque is calculated by  

multiplying weight(m), gravity(g) 

acceleration, and rod length(l) as displayed 

in equation 19. 

 𝜏 = 𝑚. 𝑔. 𝑙 (19) 

7. If the servo was able to hold and moved, the 

current variable weight and rod length is 

marked with an “normal” mark. 

8.  If the servo was able only to hold or could 

be moved to certain angle before sending 

alarm message, the current variable weight 

and rod length is marked with a “critical” 

mark. 

9. If the servo was not able to neither hold nor 

move, the current variable weight and rod 

length is marked with a “unable” mark. 

10. The test is repeated by changing its weight, 

rod length, and servo speed until certain rod 

length received 2 “unable” marks in a row. 

The test result is displayed in graphics on 
figure 7. The result above is tested for 
Moving_Speed 100 or 11.4 rpm, 200 or 22.8 rpm, 
and 500 or 57 rpm. 

According to this test result the servo can 

move 0 -180o and have the torque available to 

hold for the appropriate torque caused by gravity 

about 1,176 Nm for Moving Speed 100, 0,98 Nm 

for Moving Speed 200, 0,882 Nm for 500 

Moving Speed. The Torque marked with “critical” 

is the critical point where the servo is not able to 

withstand the torque while moving but it can hold 

the weight using its stall torque. The Torque 

marked “unable” is the point where the servo 

unable to withstand the arm weight using its stall 

torque.  

The result test is compared to the datasheet 

of the servo MX-288. Based on the datasheet, the 

stall torque of the servo is 2.5Nm at 12V and 

using speed of 11.4 rpm can result about 

1.176Nm based on the datasheet performance 

graph. This results in 0.05 error difference in stall 

torque, and 0 moving torque between the test and 

datasheet. The error can be caused by the 

hardware specification, especially the power 

supply voltage and current used. But the error 

result is a minimized error on stall torque  

 According to this torque test, current robot 

structure and construction is torque limited 

mostly at servo 2, which hold the longest axis 

from joint 2 to the endpoint about 0.45 m in 

length and weights 0.7 kg. This resulted in 

downward Torque around 1.54Nm that cannot be 

handled by the servo MX-28 while moving. The 

torque limit prevents the servo from moving and 

sometimes can overload the stall torque. As a 

result of this problem, the resultant length from 

the axis of joint 2 to the end point should not 

exceed  0.3 meter and uses the 11.4 rpm as the 

angular speed. 

IV.2. Servo MX-28 Angle Accuracy Test 

This test is to determine the accuracy of the 

servo angle. The servo is instructed to rotate at 

variable angle (0o-360o), the angle then converted 

into servo angle (0-4095), and then after the 

servo reach the position, the servo is instructed to 

read its current angle and displayed it while the 
 

Figure 7. Torque Capability Test Graph 

2,45 2,45 2,45

2,254 2,254 2,254

1,176
0,98 0,955

0

0,5

1

1,5

2

2,5

3

11,4 22,8 57

Torque
(Nm)

Angular 
Speed(rpm)

Torque Capability Test

Unable Critical Normal
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servo 

is 

measured by a protractor with accuracy of 1o. 

The result is detailed in table 2. 

The angle test, results in no difference in 

measurement using the protractor. There are 

differences in measurements using the position 

sensor inside the MX-28 Servo. The position 

error creates about ± 2 servo angle which resulted 

in about ± 0.176o difference when displaying the 

joint angle, but other than that it is very 

minimalized error. 

IV.3. Record and Display Program Test 

 The record program is tested by 

manually turning the robot from a position to 

another 2 different position, while the record 

program is running. The robot is put into a 3-side 

box, with each side representing plane XZ,YZ, 

and XY with a tick marks of 5 cm for each axis. 

Pictures are taken when the robot at its first pose, 

and another pictures when the robot is at the next 

pose, and another is taken at the last robot pose. 

Then the pictures are compared to the displayed 

plane on the program. The recorded program 

resulted in 126 recorded position of each servo. 

Table 2. Angle Accuracy Test Result 

Angle Servo 

Angle 

Read 

Angle 

Measured 

Angle 

0 0 0 0 

36 410 410 36 

72 819 820 72 

90 1024 1024 90 

108 1229 1228 108 

144 1638 1637 144 

180 2048 2047 180 

216 2457 2458 216 

252 2867 2869 252 

270 3071 3072 270 

288 3276 3276 288 

324 3686 3687 324 

360 4095 4094 360 

 

Figure 8. Pivot real pose 2 

 

Figure 9. Displayed pivot of pose 2 

 
Figure 10. Displayed Pivot XZ, YZ, and XY of 

pose 1 

 

Figure 11. Pivot real pose 1 

0,27,16 

0,10,35 

0,0,15 

-15,15,0 

 -15,15,25 

0,0,15 
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The pose is displayed on figure 8,10, 12. The 2D 

plane  of each pose are displayed in figure 9, 11 

and 13.  

The Record Program test is done 

successfully at given pose with minimum XYZ 

position errors. The errors made between the real 

angle and the displayed one, possibly caused by 

3 issues, first is the amount of readable resolution 

of the servo position encoder, second is the 

rounding of the angle data inside the program, 

third is the misalignment made in the current 

robot structure and model that could have 

changed the position of each joint and links,. But 

this error is minimalized to ± 1cm ors relative 

error of 6.67%. 

 

IV.4. Play Record Program Test 

The Play Record Program is tested by 

commanding the Play program to play the 

recorded data that already done in Record 

Program test, then the last pose of play record 

program is compared  with the recorded last pose. 

This test is done in two different way, each done 

in 5 times. Both of the test is done using the Box 

scale of 5cm as the measurement tool. The first 

test is done by waiting until each servo has 

arrived at the current position before giving the 

next position.  

The test result achieved almost the same as 

figure 12, displayed in table 3, with error of 

<±1cm or 6.67% Relative Error. This means 

when the robot is using the queue system in its 

playback program, the result position should be 

the same as when the robot poses recorded. The 

second test is done by using the time delay 

recorded as the time delay. The result of the last 

pose is displayed in figure 14. The full result of 

the test is displayed on table 3. After comparing 

the result of the robot during recording, with the 

last pose after the recording is played, an error of  

±5cm or relative error 33.3% occurred. This error 

is caused by three problems. 

First problems can be caused by the pose 

that is saved during recording, which could be 

too fast for the servo to keep up with. Especially 

when the servo pose is recorded manually by 

hands without knowing the real time speed. 

Second, is the limited torque of the servo 

especially servo number 2, which causing the 

speed of this servo to be lower than expected 11.4 

rpm.  

When the servo is turned manually, the 
torque requirements to move the robot to certain 
position is fulfilled by the torque created by the 
operator hand and gears inside the servo motor. 
When the robot is playing the recorded pose, the 

 

Figure 12. Pivot real pose 3 

 

Figure 13. Displayed pivot of pose 3 

 

Figure 14. Robot pose after playing the record 

Table 3.  Play Record Test Result 

No 

Play Record Mode 

Queued Error (cm) Time delay error (cm) 

x y z r Ae Re x y z r Ae Re 

1 0 0 0 0 0 0 0 5 0 5 5 33.3% 

2 0 0 0 0 0 0 0 5 0 5 5 33.3% 

3 0 0 0 0 0 0 0 5 0 5 5 33.3% 

4 0 0 0 0 0 0 0 5 0 5 5 33.3% 

5 0 0 0 0 0 0 0 5 0 5 5 33.3% 

15,15,25 

15,15,0 

0,0,15 

15,20,0 
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torque required to move is only created by the  
servo.  This in turn causing the robot pose at 
certain time, different than the recorded pose at 
that exact time when playing the recorded pose. 
And when given the next pose, the robot, with its 
already wrong position is causing the next pose 
to be wrong as well. This sequence of error can 
cause accumulated error from one pose to 
another until the last pose is given. And this 
problem can cause different problem as well, 
such as 2 links crossing each other while the 
servo is turning to its goal position (which may 
break the links), or making the robot pushing the 
bottom plane like the example case  in this test. 

The third problem is the misaligned angle 
created during recording caused by the robot 
structure.  

V. Conclusion 
This research has developed several 

ROTARIC program functions including the 

recording, play record and 2-D display using 

forward kinematics. The Record mode and 2-D 

display uses Denavit Hartenberg method to 

calculate the Forward Kinematics solution and 

has achieved minimum errors of <±1 cm or 6.67% 

relative error difference from the real time 

position. Meanwhile, the playback recording 

function that uses queue system achieved error of 

<±1cm or of 6.67% relative error  and error of 

±5cm or 33.3% relative error  when the recorded 

pose is played using real time delay used in 

recording  after moving to 2 recorded poses as a 

result of its servo number 2 limited torque 

capability. In the next development, further 

improvement can be made to reduce these errors 

either by changing the servo 2 torque capability 

to a different servo type, improvement on robot 

structure, or better structure on the program to 

handle the recording and playback system 

accurately. 
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