

Scientific Journal Widya Teknik
 Volume 22 No. 1 2023

 ISSN 1412-7350 eISSN 2621-362

DESIGN AND IMPLEMENTATION OF POSE RECORDING SYSTEM

WITH DENAVIT HARTENBERG METHOD IN A 6-DOF ROBOT ROTARIC

Calvin Susanto1*, Fransisko Limanuel2, Ferry Rippun3

1Electrical and Electronics Engineering Faculty

Atma Jaya Catholic University of Indonesia

Jakarta, Indonesia 15345

*e-mail : 1calvinsusreal@gmail.com

ABSTRACT

Robot developments have been integrated into several industrial and home appliances. To keep up

with the development, UNIKA Atma Jaya created a group called PATRIOT as a head start, and started the

development on ROTARIC robot. One of the early robot research discussed in this paper is to design and

implement ROTARIC 6-DOF robot pose recording system which is drawn using forward kinematics with

Denavit Hartenberg method. The system has a GUI with several function inside such as robot pose

recording, 2-D display of the robot recorded pose using Forward Kinematics analysis, and playback

recorded pose. The system uses several hardware that have been connected serially such as 6 Dynamixel

MX-28 servo, OpenCM 9.04 +485 EXP microcontroller, and a Computer. The Software used in the system

is C# .NET with WinForms App as the GUI and Arduino IDE. From the test done in this research, the

recording and 2-D drawing system achieved error <±1cm or 6.67% relative error caused by the resolution

value while reading the servo position sensor and the value rounding inside the program. Meanwhile, the

playback recording function that uses queue system achieved error of <±1cm and error of ±5cm or 33.3%

relative error when the recorded pose is played using real time delay used in recording. The error is caused

by the robot failure to keep up with the speed of the recorded pose and the limited torque in servo number

2 in the robot.

ABSTRAK

Perkembangan robot telah diintegrasikan kedalam berbagai peralatan industry dan rumah. Untuk

menyamakan perkembangan tersebut UNIKA Atma Jaya membuat grup bernama PATRIOT sebagai

tumpuan awal dan telah memulai pengembangan untuk robot ROTARIC. Salah satu penelitian yang

didiskusikan di paper ini adalah desain dan implementasi sistem perekaman pose robot ROTARIC 6-DOF

yang digambarkan menggunakan forward kinematic dengan metode Denavit Hartenberg. Sistem tersebut

memiliki GUI dengan berberapa fungsi didalamnya seperti perekaman pose robot, penggambaran pose

robot 2-D menggunakan analisis Forward Kinematik dan pemutaran pose rekaman. Sistem tersebut

menggunakan berberapa perangkat keras yang dihubungkan secara serial seperti 6 buah servo Dynamixel

MX-28, mikrokontroller OpenCM 9.04 +EXP 485, dan sebuah Komputer. Perangkat lunak yang digunakan

pada sistem yaitu C# .NET dengan WinForms App sebagai GUI dan juga Arduino IDE. Dari pengujian

yang dilakukan pada penelitian ini, sistem perekaman dan penggambaran 2-D memeperoleh nilai error

<±1cm atau relative error sebesar 6.67% disebabkan oleh nilai resolusi pada saat pembacaan sensor

posisi pada servo dan juga pembulatan didalam program. Sementara, pada fungsi pemutaran rekaman

yang menggunakan sistem antrian memperoleh error <±1cm dan untuk pemutaran rekaman yang

menggunakan waktu jeda meperoleh error ±5cm atau relative error sebesar 33.3%. Error tersebut

disebabkan oleh kegagalan robot untuk menyamakan kecepatan dengan kecepatan rekaman pose, dan juga

keterbatasan torsi pada servo kedua pada robot.

Keywords: 6-DOF Articulated Robot; Robot pose recording; Forward Kinematics;

Dynamixel MX-28; OpenCM 9.04.

I. Introduction
Robotics technologies have advanced and

integrated in every form of electronic device

from several home appliances to industrial scaled

automated manufacturers. Robots services is to

replace direct human work automatically, as

efficient and reliably repeatable1. Faculty of

Engineering of UNIKA Atma Jaya have started a

team called “Pusat Robotik dan Internet of

Things” (PATRIOT). The team intent is to

develop an articulated robot manipulator as a

Calvin Susanto e.a.. / Widya Teknik Vol 23 No 1

2

head start of robotics research in UNIKA Atma

Jaya.

Early development stage of this robot is to

design and build robotic arm with 6-Degree of

Freedom (DOF) called ROTARIC (Rotary

Articulated Arm Robot with Interchangeable

Component). The robot is intended to have

features such as easy to modify, movement

position recording, fast response, accurate and

User Interface capable of controlling and

monitors through programs. This development is

expected to bring the basic research in robotic

design, programming, and functionality that may

led to more advanced research in the future.

This works dives into the recording

functionality in the robotic arm. The recording

function aims to make controlling and

programming the robot easier through input

based on where the links and joints condition in

real time by manually moving the robot by hand.

Then after the recorded links and joints have been

saved, the robot can be moved according to the

recorded information. Secondly the recorded

information can be displayed as a movement

simulation using a user interface.

II. Theory/ basic theory
II.1. Articulated Robotic Arm

The articulated robotic arm is the type of

robot manipulator where several robot links are

connected serially by either a revolute or

prismatic joint from the base of the robot to the

end-effector2. Because of this configuration the

robot has many poses based on its joint condition

that can also change its end-effector position and

orientation3. To determine the position of the

joints and link in a Coordinate space uses a

solution called Forward Kinematics4.

II.2. Forward Kinematics with Denavit

Hartenberg Parameters

In Robotics application, Forward

Kinematics can be used to determine a robot

coordinates in a 3-D plane based on the robot

joint and links5. There are many forward

kinematics models to do this. One of which is the

Denavit-Hartenberg(D-H) model that is the most

common one to use6.

To determine the pose of a robotic arm in a

Cartesian coordinate, the first step is to assign the

Denavit Hartenberg parameter on each joint

based on the position and orientation of the joint.

Before the Denavit Hartenberg is assigned, each

joint is attached with 3-D coordinate frame by

following some prerequisite/rules7.

1. Each joint axis either rotational or linear

must be assigned as axis Zi.

2. Define the axis Xi perpendicular to axis Zi

and axis Zi-1.If possible, define Xi parallel

to Xi-1.

3. Define axis Yi perpendicular to both Zi and

Xi according to right hand rule.

After each joint orientation and position

have been determined, the next step is to

determine the D-H parameters of each joint. The

D-H parameters of a joint consist of 4

parameters7:

1. Parameter d is the offset from the center of

previous joint Oi-1 to the center of current

joint Oi-1 measured from Zi-1.

2. Parameter θ (theta) is the angle needed to

rotate the joint around Zi-1 until axis Xi-1

is aligned to Xi.

3. Parameter a is the offset from Oi-1 to Oi

measured from axis Xi

4. Parameter α (alpha) is the angle needed to

rotate the joint, around axis Xi until axis Zi

is aligned to Zi-1

After the D-H parameter is determined then

the next step is to create homogenous

transformation matrix based on the D-H

parameter. The matrix consists of 2 part, the 3x3

matrix rotational part and 3x1 matrix translation

part as pictured in equation 1.

 [T] = (
|

R

3 x 3

| |
T

3x1
|

0 0 0 1

) (1)

Homogenous matrix of Denavit Hartenberg

is the transformation matrix of a joint that consist

of 2 components. First, is the transformation

along the Zi axis on the joint depicted as 4x4

matrix [Zi] which is the result of translation along

axis Zi by di [TZi(di)] and rotation around axis Zi

by θi [RZi(θi)].

[TZi(di)] = [

1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1

] (2)

 [RZi(θi)] = [

cos θi −sin θi 0 0
sin θi cos θi 0 0
0 0 1 0
0 0 0 1

] (3)

 [Zi] = [TZi(di)][RZi(θi)] (4)

Second, is the transformation along axis Xi

on the joint depicted as 4x4 matrix [Xi] which is

the result of translation along Xi by ai [Txi(ri)]and

rotation around Xi by αi [Rxi(ri)].

Calvin Susanto e.a.. / Widya Teknik Vol 23 No 1

3

 [TXi(ai)] = [

1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1

] (5)

 [RZi(αi)] = [

1 0 0 0
1 cos αi −sin αi 0
0 sin αi cos αi 0
0 0 0 1

] (6)

 [Xi] = [TXi(ai)][RZi(αi)] (7)

The two 2 component is multiplied as

equation 8 and 9 which resulted in 4x4 matrix

[T]n
m indicating a transformation from joint m to

joint n.

 [T]n
m = [Zi][Xi] (8)

= [

cosθi −sin θi cosαi sinθi sinαi ai cosθi
sin θi cos θi cosαi −cosθi sinαi ai cosθi
0 sinαi cos αi dn
0 0 0 1

] (9)

After the matrix of each DH-Parameter have

been created, then the next step is to multiply

each transformation matrix from the base [T1
0]

with the next matrix [T2
1] which created the

matrix result [T2
0]. Then the current matrix result

is multiplied by the next transformation matrix

[T3
2] which created the next matrix result [T3

0]
and so on until the n transformation matrix has

been multiplied which created the final result

matrix [Tn
0] as depicted in equation 10.

 [Tn
0] = [T1

0][T2
1] … [Tn

n−1] (10)

After each calculation is done the position

of each joint (Px,Py,Pz) can be acquired by

extracting the 3x1 matrix on the upper right

corner from each end-effector matrix ([Pn
0])

depicted below in equation 11.

[Tn
0] =

(

 |
R

3 x 3

||

Px
Py
Pz

|→ Pn
0

0 0 0 1)

 (11)

III. Research methodology

III.1. Robot Structure and System

The ROTARIC robot is an articulated

robotic arm type. On this research the robot is a

6 DOF robotic arm ,with the structures are shown

in figure 1. System of the 6 DOF robotic arm is

designed as block diagram on figure 2.

Six Dynamixel MX-288 servo is used as

rotational joint between the links connected

serially. Then the robot is connected to an

OpenCM 9.049 and its expansion board EXP

48510 microcontroller as a serial interface to the

robot and connected through serial interface on

the computer. The computer has a Visual C# .Net

program that processing all the input or output

from the User Interface and calculating the

kinematics of the robot. The C# program uses

Object Oriented Programming divided into 5

classes by its role in the program. The UI

interface is displayed through figure 3 to 5.

The Recording system is started by giving

an input(in this case a press of a button to start

the function, and textbox time delay between

each records) to the UI in the C# program. Then

the program sends the command to get each servo

angle to the OpenCM 9.04 through the serial port

and then the OpenCM9.04 sends the command to

Figure 1. ROTARIC Robot Structure Design

Figure 2. ROTARIC System Diagram

Figure 3. Record Mode UI

servo 6

servo 5

servo 4

servo 3
servo 2

servo 1

Calvin Susanto e.a.. / Widya Teknik Vol 23 No 1

4

read the register where the current servo angle is

saved through its serial port to the servos.

Then the servo writes the angle data back to

the serial port to the OpenCM 9.04. Then the

servos angle is sent back from OpenCM serial

port to the C# Program on the PC. The angle then

saved in a text file according to the chosen save

file , including the time delay used for the

recording. Then the program waits until either

stop recording command is called or until the

time delay is up which then the program is looped

back to the start of recording. While this

recording program is looping, the robotic arm

then can be turned manually by hand and the pose

can be saved at when the time delay is up.

Once the recording is saved and the

recording program is stopped then recorded pose

can be played back. First the playback program

read the saved angle and then send the command

to write the angle to the OpenCM 9.04. Then the

OpenCM 9.04 writes the position to the servos as

goal position to turn to. Meanwhile, another

program is used to determine and draw the

coordinates of each servo in a 3-D space.

To determine the robot coordinates in a 3-D

plane, requires a method to calculate the position

and orientation, which will be the Forward

Kinematics.

III.2. Forward Kinematics

Based on its structure, the robot joints frame

and orientation can be described by putting 8

frames on the robot as pictured on figure 6. Then

based on the joint frames, the DH-Parameter can

be created on table 1. Based on the joint frames,

the robot only has the parameter θi that changed

dynamically, the other parameters are statics

parameter.

Based on the D-H parameter on table 1, the

D-H matrix [Tn
n−1] is created from [T1

0] to
[T8
7].Multiplying each matrix sequentially from

[T1
0] to [T7

6] resulted in each end-effector

matrices for each joint until the last end-effector

matrix [T7
0] as depicted in equation 12 through

18.

Figure 4. The 3-D representation with 2-D plane Pivot

Table 1. D-H Parameters

i a α d θ

1 0 0 0 0

2 0 -90 d1 θ1

3 0 90 0 θ2

4 0 -90 d3 θ3

5 0 90 0 θ4

6 0 -90 d5 θ5

7 0 90 0 θ6

8 0 0 d7 0

Figure 5. Robot Coordinate Frames

Figure 6. Play mode UI

Calvin Susanto e.a.. / Widya Teknik Vol 23 No 1

5

 [T2
0] = [T1

0][T2
1] (12)

 [T3
0] = [T2

0][T3
2] (13)

 [T4
0] = [T3

0][T4
3] (14)

 [T5
0] = [T4

0][T5
4] (15)

 [T6
0] = [T5

0][T6
5] (16)

 [T7
0] = [T6

0][T7
6] (17)

 [T8
0] = [T7

0][T8
7] (18)

This method from the start of defining D-H

parameter until getting each position of end-

effector is repeated every time the drawing

function gets called using each servo angles as an

input parameter.

IV. Research results and discussions
IV.1. Servo MX-28Torque Test

The servo needs to be tested for servo

torque to determine the availability of torque.

This test is done by several step.

1. The servo is put on a fixed base about 1.5

meter above the floor.

2. Changed the servo register Moving_Speed

to a variable value (100,200,500). Changed

the servo angle from 0o (downward) to 90o

(sideward).

3. A steel rod about 20 cm is mounted on the

servo horn. The rod weight is 55 grams.

The steel rod is marked with tape at 5 cm,

10 cm, 15 cm and 20 cm.

4. Then a string is attached at the first mark.

A bottle with water as variable weight is

attached to the string. The bottle was made

to be hanging above the floor.

5. Change the servo angle to 180o(upward)

slowly(e.g. 10o in difference), if it able to

hold the weight and not sending an alarm

message.

6. The torque is calculated by

multiplying weight(m), gravity(g)

acceleration, and rod length(l) as displayed

in equation 19.

 𝜏 = 𝑚. 𝑔. 𝑙 (19)

7. If the servo was able to hold and moved, the

current variable weight and rod length is

marked with an “normal” mark.

8. If the servo was able only to hold or could

be moved to certain angle before sending

alarm message, the current variable weight

and rod length is marked with a “critical”

mark.

9. If the servo was not able to neither hold nor

move, the current variable weight and rod

length is marked with a “unable” mark.

10. The test is repeated by changing its weight,

rod length, and servo speed until certain rod

length received 2 “unable” marks in a row.

The test result is displayed in graphics on
figure 7. The result above is tested for
Moving_Speed 100 or 11.4 rpm, 200 or 22.8 rpm,
and 500 or 57 rpm.

According to this test result the servo can

move 0 -180o and have the torque available to

hold for the appropriate torque caused by gravity

about 1,176 Nm for Moving Speed 100, 0,98 Nm

for Moving Speed 200, 0,882 Nm for 500

Moving Speed. The Torque marked with “critical”

is the critical point where the servo is not able to

withstand the torque while moving but it can hold

the weight using its stall torque. The Torque

marked “unable” is the point where the servo

unable to withstand the arm weight using its stall

torque.

The result test is compared to the datasheet

of the servo MX-288. Based on the datasheet, the

stall torque of the servo is 2.5Nm at 12V and

using speed of 11.4 rpm can result about

1.176Nm based on the datasheet performance

graph. This results in 0.05 error difference in stall

torque, and 0 moving torque between the test and

datasheet. The error can be caused by the

hardware specification, especially the power

supply voltage and current used. But the error

result is a minimized error on stall torque

 According to this torque test, current robot

structure and construction is torque limited

mostly at servo 2, which hold the longest axis

from joint 2 to the endpoint about 0.45 m in

length and weights 0.7 kg. This resulted in

downward Torque around 1.54Nm that cannot be

handled by the servo MX-28 while moving. The

torque limit prevents the servo from moving and

sometimes can overload the stall torque. As a

result of this problem, the resultant length from

the axis of joint 2 to the end point should not

exceed 0.3 meter and uses the 11.4 rpm as the

angular speed.

IV.2. Servo MX-28 Angle Accuracy Test

This test is to determine the accuracy of the

servo angle. The servo is instructed to rotate at

variable angle (0o-360o), the angle then converted

into servo angle (0-4095), and then after the

servo reach the position, the servo is instructed to

read its current angle and displayed it while the

Figure 7. Torque Capability Test Graph

2,45 2,45 2,45

2,254 2,254 2,254

1,176
0,98 0,955

0

0,5

1

1,5

2

2,5

3

11,4 22,8 57

Torque
(Nm)

Angular
Speed(rpm)

Torque Capability Test

Unable Critical Normal

Calvin Susanto e.a.. / Widya Teknik Vol 23 No 1

6

servo

is

measured by a protractor with accuracy of 1o.

The result is detailed in table 2.

The angle test, results in no difference in

measurement using the protractor. There are

differences in measurements using the position

sensor inside the MX-28 Servo. The position

error creates about ± 2 servo angle which resulted

in about ± 0.176o difference when displaying the

joint angle, but other than that it is very

minimalized error.

IV.3. Record and Display Program Test

 The record program is tested by

manually turning the robot from a position to

another 2 different position, while the record

program is running. The robot is put into a 3-side

box, with each side representing plane XZ,YZ,

and XY with a tick marks of 5 cm for each axis.

Pictures are taken when the robot at its first pose,

and another pictures when the robot is at the next

pose, and another is taken at the last robot pose.

Then the pictures are compared to the displayed

plane on the program. The recorded program

resulted in 126 recorded position of each servo.

Table 2. Angle Accuracy Test Result

Angle Servo

Angle

Read

Angle

Measured

Angle

0 0 0 0

36 410 410 36

72 819 820 72

90 1024 1024 90

108 1229 1228 108

144 1638 1637 144

180 2048 2047 180

216 2457 2458 216

252 2867 2869 252

270 3071 3072 270

288 3276 3276 288

324 3686 3687 324

360 4095 4094 360

Figure 8. Pivot real pose 2

Figure 9. Displayed pivot of pose 2

Figure 10. Displayed Pivot XZ, YZ, and XY of

pose 1

Figure 11. Pivot real pose 1

0,27,16

0,10,35

0,0,15

-15,15,0

 -15,15,25

0,0,15

Calvin Susanto e.a.. / Widya Teknik Vol 23 No 1

7

The pose is displayed on figure 8,10, 12. The 2D

plane of each pose are displayed in figure 9, 11

and 13.

The Record Program test is done

successfully at given pose with minimum XYZ

position errors. The errors made between the real

angle and the displayed one, possibly caused by

3 issues, first is the amount of readable resolution

of the servo position encoder, second is the

rounding of the angle data inside the program,

third is the misalignment made in the current

robot structure and model that could have

changed the position of each joint and links,. But

this error is minimalized to ± 1cm ors relative

error of 6.67%.

IV.4. Play Record Program Test

The Play Record Program is tested by

commanding the Play program to play the

recorded data that already done in Record

Program test, then the last pose of play record

program is compared with the recorded last pose.

This test is done in two different way, each done

in 5 times. Both of the test is done using the Box

scale of 5cm as the measurement tool. The first

test is done by waiting until each servo has

arrived at the current position before giving the

next position.

The test result achieved almost the same as

figure 12, displayed in table 3, with error of

<±1cm or 6.67% Relative Error. This means

when the robot is using the queue system in its

playback program, the result position should be

the same as when the robot poses recorded. The

second test is done by using the time delay

recorded as the time delay. The result of the last

pose is displayed in figure 14. The full result of

the test is displayed on table 3. After comparing

the result of the robot during recording, with the

last pose after the recording is played, an error of

±5cm or relative error 33.3% occurred. This error

is caused by three problems.

First problems can be caused by the pose

that is saved during recording, which could be

too fast for the servo to keep up with. Especially

when the servo pose is recorded manually by

hands without knowing the real time speed.

Second, is the limited torque of the servo

especially servo number 2, which causing the

speed of this servo to be lower than expected 11.4

rpm.

When the servo is turned manually, the
torque requirements to move the robot to certain
position is fulfilled by the torque created by the
operator hand and gears inside the servo motor.
When the robot is playing the recorded pose, the

Figure 12. Pivot real pose 3

Figure 13. Displayed pivot of pose 3

Figure 14. Robot pose after playing the record

Table 3. Play Record Test Result

No

Play Record Mode

Queued Error (cm) Time delay error (cm)

x y z r Ae Re x y z r Ae Re

1 0 0 0 0 0 0 0 5 0 5 5 33.3%

2 0 0 0 0 0 0 0 5 0 5 5 33.3%

3 0 0 0 0 0 0 0 5 0 5 5 33.3%

4 0 0 0 0 0 0 0 5 0 5 5 33.3%

5 0 0 0 0 0 0 0 5 0 5 5 33.3%

15,15,25

15,15,0

0,0,15

15,20,0

Calvin Susanto e.a.. / Widya Teknik Vol 23 No 1

8

torque required to move is only created by the
servo. This in turn causing the robot pose at
certain time, different than the recorded pose at
that exact time when playing the recorded pose.
And when given the next pose, the robot, with its
already wrong position is causing the next pose
to be wrong as well. This sequence of error can
cause accumulated error from one pose to
another until the last pose is given. And this
problem can cause different problem as well,
such as 2 links crossing each other while the
servo is turning to its goal position (which may
break the links), or making the robot pushing the
bottom plane like the example case in this test.

The third problem is the misaligned angle
created during recording caused by the robot
structure.

V. Conclusion
This research has developed several

ROTARIC program functions including the

recording, play record and 2-D display using

forward kinematics. The Record mode and 2-D

display uses Denavit Hartenberg method to

calculate the Forward Kinematics solution and

has achieved minimum errors of <±1 cm or 6.67%

relative error difference from the real time

position. Meanwhile, the playback recording

function that uses queue system achieved error of

<±1cm or of 6.67% relative error and error of

±5cm or 33.3% relative error when the recorded

pose is played using real time delay used in

recording after moving to 2 recorded poses as a

result of its servo number 2 limited torque

capability. In the next development, further

improvement can be made to reduce these errors

either by changing the servo 2 torque capability

to a different servo type, improvement on robot

structure, or better structure on the program to

handle the recording and playback system

accurately.

Acknowledgement
This research was supported by Universitas

Katolik Indonesia Atma Jaya funded by Fakultas

Teknik Unika Atma Jaya

References
1. Pitowarno. Endra. 2006. ROBOTIKA:

Desain, Kontrol, dan Kecerdasan Buatan.

Andi Offset. Yogyakarta:

2. Gerald Cook. 2011. Mobile Robots:

Navigation, Control and Remote Sensing.

Wiley-IEEE Press.

3. Ovy, Enaiyat Ghani & Ferdous, S.M. &

Rokonuzzaman, Mohammad &

Chowdhury, Md Nurul. 2011. Design and

Implementation of an Articulated Robotic

Arm for Precise Positioning. Advanced

Materials Research. Advanced

Manufacturing Systems.

4. Peter Corke. 2011. Robotics, Vision and

Control. Springer, Vol. 73.

5. Mark W. Spong, Seth Hutchinson, and M.

Vidyasagar. 2006. Robot Modeling and

Control. JOHN WILEY, SONS, INC.

6. Hartenberg, Richard Scheunemann;

Denavit, Jacques. 1965. Kinematic

synthesis of linkages. McGraw-Hill series

in mechanical engineering. McGraw-Hill.

New York:

7. S. Mohamed, Ihab & Kumar, Ashwin &

Serrano, Vaness. 2016. Serial Link

Manipulator With 6-DoF.

8. ROBOTIS, e-Manual, Dynamixel. 2020.

MX-28T/R/AT/AR.

(https://emanual.robotis.com/docs/en/dxl/

mx/mx-28/ , accessed 20/11/2020).

9. ROBOTIS, e-Manual. 2020. OpenCM 9.04

(https://emanual.robotis.com/docs/en/parts

/controller/opencm904/ , accessed

20/11/2020).

10. ROBOTIS, e-Manual. 2020. OpenCM 485

EXP

(https://emanual.robotis.com/docs/en/parts

/controller/opencm485exp/ , accessed

20/11/2020)

https://emanual.robotis.com/docs/en/dxl/mx/mx-28/
https://emanual.robotis.com/docs/en/dxl/mx/mx-28/
https://emanual.robotis.com/docs/en/parts/controller/opencm904/
https://emanual.robotis.com/docs/en/parts/controller/opencm904/
https://emanual.robotis.com/docs/en/parts/controller/opencm485exp/
https://emanual.robotis.com/docs/en/parts/controller/opencm485exp/

