UTILIZATION OF ANGIOTENSIN-CONVERTING ENZYME INHIBITORS AND ANGIOTENSIN RECEPTOR BLOCKERS FOR GLAUCOMA

Alyssa Claudia Valerie Gunawan, Titiek Ernawati, Kevin Anggakusuma Hendrawan, Wilson Christianto Khudrati

Abstract


Glaucoma is a crucial ocular health issue that warrants meticulous attention according to its status as the leading cause of irreversible visual impairment on a global scale. The incidence of this illness has been on a steady rise, notably within the Asian region. Blood pressure impacts both intraocular pressure (IOP) and ocular perfusion pressure (OPP), which is the pressure responsible for facilitating blood flow to the eyeball. Hypertension is considered a contributing factor in the development of glaucoma. The Renin-Angiotensin-Aldosterone System (RAAS) plays a crucial role in the pathophysiology of hypertension and also contributes to the pathogenesis of glaucoma. The presence of Renin-angiotensin-aldosterone system (RAAS) inhibitors medications, such as angiotensin-converting enzyme inhibitors (ACE-I) and angiotensin receptor blockers (ARB) have demonstrated efficacy in reducing intraocular pressure (IOP) and reducing ganglion cell apoptosis. Consequently, these pharmacological agents present a viable therapeutic approach to patients afflicted with hypertension and glaucoma.

Save to Mendeley


Keywords


Glaucoma, RAAS, hypertension, ACE-I, ARB

Full Text:

PDF

References


Allison K, Deepkumar P, Alabi O. Epidemiology of Glaucoma: The Past, Present, and Predictions for the Future. Cureus. 2020;12(11).

Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology [Internet]. 2014;121(11):2081–90. Available from: http://dx.doi.org/10.1016/j.ophtha.2014.05.013

McMonnies CW. Glaucoma History and Risk Factors. J Optom [Internet]. 2017;10(2):71–8. Available from: http://dx.doi.org/10.1016/j.optom.2016.02.003

AAO. Section 10: Glaucoma. In: American Academy of Ophthalmology Basic and Clinical Science Course. San Fransisco: American Academy of Ophthalmology; 2023.

Dietze J, Blair K, Havens SJ. Glaucoma [Internet]. Treasue Island (FL): StatPearls Publishing; 2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK538217/

Nislawati R, Taufik Fadillah Zainal A, Ismail A, Waspodo N, Kasim F, Gunawan AMAK. Role of Hypertension as a Risk Factor for Open-Angle Glaucoma: A systematic review and meta-analysis. BMJ Open Ophthalmol. 2021;6(1):1–9.

He Z, Vingrys AJ, Armitage JA, Bui B V. The role of blood pressure in glaucoma. Clin Exp Optom. 2011;94(2):133–49.

Xu L, Wang H, Wang Y, Jonas JB. Intraocular Pressure Correlated with Arterial Blood Pressure: The Beijing Eye Study. Am J Ophthalmol. 2007;144(3):461–2.

Zhao D, Cho J, Kim MH, Guallar E. The Association of Blood Pressure and Primary Open-Angle glaucoma: A meta-analysis. Am J Ophthalmol [Internet]. 2014;158(3). Available from: http://dx.doi.org/10.1016/j.ajo.2014.05.029

Leeman M, Kestelyn P. Glaucoma and Blood Pressure. Hypertension. 2019;73(5):944–50.

Costa VP, Harris A, Anderson D, Stodtmeister R, Cremasco F, Kergoat H, et al. Ocular perfusion pressure in glaucoma. Acta Ophthalmol. 2014;92(4):252–66.

Cantor E, Méndez F, Rivera C, Castillo A, Martínez-Blanco A. Blood pressure, ocular perfusion pressure and open-angle glaucoma in patients with systemic hypertension. Clin Ophthalmol. 2018;12:1511–7.

Chung HJ, Hwang H Bin, Lee NY. The association between primary open-angle glaucoma and blood pressure: Two aspects of hypertension and hypotension. Biomed Res Int. 2015;2015.

Fountan JH, Kaur J, Lappin SL. Physiology, Renin Angiotensin System [Internet]. StatPearls. Treasue Island (FL): StatPearls Publishing; 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470410/

Kanugula AK, Kaur J, Batra J, Ankireddypalli AR, Velagapudi R. Renin-Angiotensin System: Updated Understanding and Role in Physiological and Pathophysiological States. Cureus. 2023

Hirooka K, Kiuchi Y. The Retinal Renin-Angiotensin-Aldosterone System: Implications for Glaucoma. Antioxidants. 2022;11(4):610.

Yang H, Hirooka K, Fukuda K, Shiraga F. Neuroprotective effects of angiotensin II type 1 receptor blocker in a rat model of chronic glaucoma. Investig Ophthalmol Vis Sci. 2009;50(12):5800–4.

Choudhary R, Kapoor MS, Singh A, Bodakhe SH. Therapeutic targets of renin-angiotensin system in ocular disorders. J Curr Ophthalmol [Internet]. 2017;29(1):7–16. Available from: http://dx.doi.org/10.1016/j.joco.2016.09.009

Holappa M, Vapaatalo H, Vaajanen A. Local ocular renin–angiotensin–aldosterone system: any connection with intraocular pressure? A comprehensive review. Ann Med [Internet]. 2020;52(5):191–206. Available from: https://doi.org/10.1080/07853890.2020.1758341

Vaajanen A, Vapaatalo H. Local Ocular Renin-Angiotensin System - A Target for Glaucoma Therapy? Basic Clin Pharmacol Toxicol. 2011;109(4):217–24.

Holappa M, Vapaatalo H, Vaajanen A. Many Faces of Renin-angiotensin System - Focus on Eye. Open Ophthalmol J. 2017;11(1):122–42.

Hirooka K, Shiraga F. Potential role for angiotensin-converting enzyme inhibitors in the treatment of glaucoma. Clin Ophthalmol [Internet]. 2007;1(3):217–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19668475%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2701139

Shah GB, Sarma S, Mehta AA, Goyal RK. Oculohypotensive Effect of Angiotensin-Converting Enzyme Inhibitors in Acute and Chronic Models of Glaucoma. J Cardiovasc Pharmacol. 2000;36(2):169–75.

Agarwal R, Krasilnikova A V., Raja IS, Agarwal P, Mohd Ismail N. Mechanisms of angiotensin converting enzyme inhibitor-induced IOP reduction in normotensive rats. Eur J Pharmacol. 2014;730(1):8–13.

Quigley HA, Pitha IF, Welsbie DS, Nguyen C, Steinhart MR, Nguyen TD, et al. Losartan treatment protects retinal ganglion cells and alters scleral remodeling in experimental glaucoma. PLoS One. 2015;10(10):1–30.

Costagliola C, Verolino M, Leonarda De Rosa M, Iaccarino G, Ciancaglini M, Mastropasqua L. Effect of oral losartan potassium administration on intraocular pressure in normotensive and glaucomatous human subjects. Exp Eye Res. 2000;71(2):167–71.

Hazlewood RJ, Chen Q, Clark FK, Kuchtey J, Kuchtey RW. Differential effects of angiotensin II type I receptor blockers on reducing intraocular pressure and TGFβ signaling in the mouse retina. PLoS One. 2018;13(8):1–18.

Wang RF, Podos SM, Mittag TW, Yokoyoma T. Effect of CS-088, an angiotensin AT1 receptor antagonist, on intraocular pressure in glaucomatous monkey eyes. Exp Eye Res. 2005;80(5):629–32.

Semba K, Namekata K, Guo X, Harada C, Harada T, Mitamura Y. Renin-Angiotensin system regulates neurodegeneration in a mouse model of normal tension glaucoma. Cell Death Dis [Internet]. 2014;5(7):e1333-11. Available from: http://dx.doi.org/10.1038/cddis.2014.296

Lorenzo-Soler L, Olafsdottir OB, Garhöfer G, Jansook P, Kristinsdottir IM, Tan A, et al. Angiotensin Receptor Blockers in cyclodextrin nanoparticle eye drops: Ocular pharmacokinetics and pharmacologic effect on intraocular pressure. Acta Ophthalmol. 2021;99(4):376–82.




DOI: https://doi.org/10.33508/jwm.v10i1.5439